

Volume VII, No. 1, 2006 40 Issues in Information Systems

DEVELOPING A MORE EFFECTIVE COURSE TO DELIVER CIS EDUCATION

Thom Luce, Ohio University, luce@ohio.edu

Vic Matta, Ohio University, matta@ohio.edu

Corrine Brown, Ohio University, brownc@ohio.edu

ABSTRACT

Students’ engagement in learning has consistently

been linked to their retention rates in the

Management Information Systems (MIS) program,

their academic success (
2
), and interest in the MIS

major. Increasing student engagement was seen as

vital to increasing enrolment in the MIS major, which

began a rapid decline in 2001. One of the steps taken

to curb this was to make changes to the curriculum,

some in its programming constituent. We found that

many institutions offer beginning programming

courses using legacy character mode editors to

develop static applications. Most MIS programming

courses and textbooks are oriented towards teaching

programming and application development with

Windows applications. This paper describes changes

made in our programming courses with respect to

teaching development of interactive web pages

instead of windows applications while using the same

Integrated Development Environment (IDE). We

discuss the rationale for the change, the challenges

we faced, and the results of this transformation.

Keywords: Programming, Engagement, ASP.NET,

VB.NET, C#.NET, Curriculum

RATIONALE

Are your students excited about their first or second

programming class? Are they actively engaged in

learning new programming languages? How many

freshmen, sophomore or even junior students have

any idea what a command prompt is or how to run

programs from the command line? How often will

the typical IS major ever need to do that? How many

of your students, born and raised in the age of

interactive video games and the Internet, are turned-

on by programs that read and write console data?

How many students say “Wow, that is cool” when

they complete the proverbial “Hello World”

program? How many of your students know what a

desktop or Windows application is? How many will

be actively involved in creating desktop/Windows

applications in their careers?

The Association to Advance Collegiate Schools of

Business (AACSB) Standards challenge us to

“generate transformational learning” which requires

an “investment of significant time in learning

experiences” and “that time includes contact between

students and faculty members, contact among

students, and individual and personal engagement of

students in learning and applying (emphasis added)

knowledge and skills “ [1, pg 52] AACSB goes on to

say that “the most effective learning takes place when

students are involved in their educational

experiences. Passive learning is ineffective and of

short duration. Faculty members should develop

techniques and styles that engage students and make

students responsible for meeting learning goals.” [1,

pg 54-55].

The requirements stated in the second paragraph are

relevant to the questions asked in the first paragraph.

Almost every introductory programming class known

to the authors starts with, and many stay with,

desktop applications. Just look at the available

textbooks and trade books. Almost to a volume they

teach VB, VB.NET, C, C++, C#, Java, or whatever

with desktop applications, either using the Console

for input/output or creating Windows (or the UNIX

equivalent) forms. Even most Java books start with

desktop applications and eventually get around to

applets. How exciting is that? How many of your

students call home (email home) bubbling over with

excitement because they were able to type something

at the command line and get an answer? How do

these students show their work to their friends,

relatives or prospective employers?

PROCESS

What do students know when they come to your

beginning programming class? They know about

video games and they know how to use the Web.

Some may also know at least a little about the

creation of static web pages, or maybe even how to

use Flash® or Photoshop® on web pages. Based on

this, and a desire to build more continuity into the

MIS major, we moved both of our programming

courses to the ASP.NET 2.0 environment starting

with the 2004-2005 school year (yes, we were using

beta software). The first course in the major

introduces programming concepts using Visual

Basic. This course formerly used VB 6, moved to

Developing A More Effective Course to Deliver CIS Education

Volume VII, No. 1, 2006 41 Issues in Information Systems

VB.NET with version 1.0 of the .NET framework

and moved to VB.NET in an ASP.NET 2.0

environment. The second programming class was

Java until the advent of .NET 1.0, when we moved it

to C#.NET, and we now teach the course in an

ASP.NET 2.0 environment.

Why did we make these changes? We did it for

excitement, for engagement and because the students

had previous knowledge they could bring to bear.

Students get excited about developing web pages that

they can show their friends, relatives and future

employers. They are actively engaged in the process

because they understand the goal and the reason for

doing the programming. They have experience in

interacting with things like text boxes, checkboxes,

radio buttons, dropdown lists, buttons and links, so

they have a hook upon which to hang new

knowledge.

Our first programming course, the first required

course in the MIS major, teaches VB.NET as a way

to create dynamic web pages and places an emphasis

on basic programming constructs with some

emphasis on comprehending and implementing

presentation layer components (textboxes, radio

buttons, etc.) [3]. Students learn how to write and

apply loops and decisions in business programming.

They learn how to accept and validate user data (both

through code and with Validator controls). Students

learn how to acquire and render data from data access

objects (again, both through code and with data

bound controls such as the GridView and

DetailView) and they learn about event-driven

programming. The course also teaches some of the

components necessary to orchestrate the flow of data

between pages and during the postback cycle.

After completing the first course, students take two

courses combined and integrated into an eight hour

block that must be taken as a unit. These courses

provide an introduction to systems analysis and

database concepts. ASP.NET development is used to

demonstrate both system design concepts and

database concepts. Students in this combined course

build knowledge based on the framework created in

the programming course.

Next in the sequence is the second programming

course, a course that teaches C#.NET in an ASP.NET

environment. This course introduces students to a

different programming syntax (C# is a C family

language), to Object Oriented Programming concepts

and to Event Driven Programming concepts. While

this course does introduce a new programming

language, it places a major emphasis on the creation

of systems and linkages between different types of

systems in order to achieve business systems

integration [5]. Students learn how to create and

consume web services [7] to achieve integration

across disparate systems. The learning curve for web

service creation is relatively low because in the

ASP.NET environment, web services look very

similar to normal user interfacing web pages.

The next course in our sequence is a systems

development/project management course that takes

students through the complete system development

life cycle and its management. Students create web-

based applications for real clients using ASP.NET

and the language of their choice (see Reference #5

for additional discussion of tools used in this course).

This course typically involves several tutorial

sessions on advanced database concepts,

programming events related to data bound controls,

accessing data on data bound controls, etc.

RESULTS

Why do this? Students get excited. They are engaged

in the learning process because they can relate to the

goal, even if they have never programmed before.

Students produce products that they can share with

friends and future employers. They produce products

that are easily displayed in Electronic Student

Portfolios. They produce projects that are easy to

assess to determine if desired learning outcomes were

attained.

Each class builds on the previous classes and uses the

same integrated development environment (IDE).

This minimizes the learning curve associated with

new IDEs and allows for development of more

sophisticated systems, more comprehensive project

management principles, and better web application

development by the time students finish the last class.

All the courses mentioned are taught using

Microsoft’s Visual Web Developer Express 2005

(VWD). They could also be taught using Visual

Studio 2005 (VS) but VS is a huge program and

supports both web and application development in

VB.NET, C#.NET, J#.NET and managed C++. VS

2005 is available as part of the Microsoft Academic

Alliance so the price is reasonable. VWD is a much

smaller product and only supports web development,

but it supports web development in VB.NET,

C#.NET and J#.NET. VWD is currently free and

even if Microsoft starts charging for it next year, the

cost should be low and it will most likely be included

in the Academic Alliance program.

Developing A More Effective Course to Deliver CIS Education

Volume VII, No. 1, 2006 42 Issues in Information Systems

VS 2005 and VWD both offer several advantages

over previous versions of Visual Studio. Students can

develop and test web applications without needing to

deploy the application to a server. VS and VWD both

contain a built-in version of Internet Information

Server (IIS) and both treat a web site project as an

Application. This means students can develop and

test applications without copying files to a web server

and without needing the administrative access to the

server required to create an application. Since web

pages run in this restricted web server environment, it

is possible to use the full debugging and tracing

facilities built into both products from student

machines, without the need for administrative access

to the system.

VS 2005 and VWD also ship with SQL Server

Express, a scaled down version of SQL Server 2005.

Using SQL Server Express allows students to

develop and test SQL Server applications using the

SqlDataSource control rather than creating Microsoft

Access applications using the AccessDataSource

control (but this is still available if you want to use

it). The advantage of this is scalability. In many cases

the only thing necessary to move an application from

SQL Server Express to SQL Server 2000 or 2005 is

changing the data source’s ConnectionString.

The approach we have taken is not without its pitfalls

and problems. First, there are essentially no textbooks

currently on the market that support this approach. If

you wish to try this, you must either try to adapt a

book that focuses on desktop applications (that hasn’t

worked very well for us), create materials, handouts,

on-line references on your own, or even write your

own textbook.

One interesting and unexpected pitfall of the

approach presented here is that lesson plans and

technology don’t necessarily become simpler in the

ASP.NET environment. If fact, there are a number of

issues to consider. First is the persistence of

application data. In an interactive desktop application

you enter data, the data is stored in memory, you

enter more data, the program manipulates and stores

the data, and you continue until the application ends.

Web pages are, by original design, stateless [4]. This

means that both instructor and student must be aware

of the problem and learn ways to save data between

postbacks. In the web environment, by design the

web application does not handle or track the data

after posting it back to the server; i.e., after you

submit data to the server, the server processes the

data and everything is lost when the server posts the

page back to the client.

ASP.NET maintains data associated with a page and

its controls in the ViewState [10]—an encrypted set

of data that is passed between the client and server in

the page header. Controls with ViewState enabled

“remember” their content from one postback to the

next. Data entered in textboxes, data selected from

checkboxes and radio buttons and results stored in

labels and textboxes are maintained (assuming the

controls ViewState property is set to true) from one

postback to another. The programmer can also store

and retrieve data directly from the ViewState with

statements such as: ViewState[“username”]

= “Jon Smith”; The primary limitations to

preserving data this way are the fact that the data is

passed back and forth between client and server and

the fact that only data that can be serialized, or

converted to a string of characters, may be stored in

the ViewState.

What about intermediate results and other data that

you don’t want the user to see? Some data could be

stored in hidden textboxes, but a knowledgeable user

could still view it by examining the page source.

There is also a problem because only data that can be

converted to a string can be moved into a textbox.

Another option, and the one we teach in our first

class, is to place data in Session variables. Session

variables can hold any valid .NET type [9] and exist

as long as the user is actively using the web

application. However, they do disappear if too much

time elapses between round-trips to the server or if

the user has disabled session cookies. Session

variables are a good way to pass data from one web

page to another while data in the ViewState are

normally associated with one page. The important

point here is the need to address this issue almost

from the beginning of the class.

We find it very difficult to teach array processing

concepts in the ASP.NET environment, especially

because of the issues discussed above. We have

found, however, that we can discuss array concepts

while dealing with substrings and collection objects.

For example, you may determine which items in a

ListBox control are selected by looping through a

ListBox control’s Items collection where each item is

accessed as a subscripted component of the

collection. Similar processing is possible with records

returned by a DataReader. Both of these examples

also serve as good, practical places to demonstrate

the use of loops of different types (for loops when the

number of items in the ListBox are known, while

loops to access records from a DataReader until the

end-of-file is reached, for-each loops to access data

from certain collection objects).

Developing A More Effective Course to Deliver CIS Education

Volume VII, No. 1, 2006 43 Issues in Information Systems

Some Object Oriented Programming concepts are

easy—a simple web page is a class file. Controls

have methods and properties used or called in normal

interactions with the control. Information hiding can

be mentioned because while we use the properties

and controls, we don’t know how they work or what

they look like at the code level. Creating new classes

and demonstrating inheritance is more difficult,

largely because of statelessness issues. Objects

instantiated from a class have to be saved during the

post back cycle and the whole process of doing that

feels very artificial, because it is. However, one good

solution to this to create web services because web

services exist in their own class file and messages are

used to communicate between the main web page and

the web service. Another possibility in a more

advanced class would be the creation and use of

DataAccessObjects to implement true n-tier

architecture applications.

SUMMARY

How is the role of IS Education Changing? Active

engagement in interesting, relevant learning keeps

students interested in the topic, the course and the

major. Gone are the days when business schools were

looking for ways to turn students away from IS

courses. Gone are the days of weed-out classes and

high grade point requirements to enter and remain in

the major. Here instead are days when we have to

work to make our classes relevant and interesting for

our students. We must work to attract students to our

majors and then to keep them. Part of this can be

accomplished by revamping our service courses and

business core courses to highlight what IS is all about

(certainly it’s about more than how to use word

processing, spreadsheets and presentation graphics

packages).

Teaching programming in a web based environment

is one way to keep students interested and engaged.

Students come to us with a comfort level in using the

web. They get excited when they can manipulate and

make it work in a way that they want and they just

may stay around to try another class. Figure 1 shows

enrolment trends in our major courses. MIS 220 is

the first class in the major. MIS 225 was the second

class in the sequence until the 04-05 school year

when MIS 320 became the second class and MIS225

was replace by MIS 400, but as the third class in the

sequence. MIS 220 and MIS 400 are the two main

programming courses discussed in this paper.

As you can see, our enrolments in the first class hit

bottom in the 03-04 school year, the same year we

started using ASP.NET 1.0 in MIS 220. We switched

to the beta version of ASP.NET 2.0 for the 04-05

year and to the release product for the 05-06 school

year. Enrollments in MIS 320 and MIS 400, while

lagging because of sequencing issues, are also in the

rise. The changes described in this paper are certainly

not the only reason for the turn in enrollment, but

they are a contributing factor.

Developing A More Effective Course to Deliver CIS Education

Volume VII, No. 1, 2006 44 Issues in Information Systems

Figure 2. Academic Year Enrollments

REFERENCES

1. Eligibility Procedures and Accreditation

Standards for Business Accreditation. AACSB

International (2006).

2. Blank, W. (1997). Authentic instruction. In W.E.

Blank & S. Harwell (Eds.), Promising practices

for connecting high school to the real world (15-

21). Tampa, FL: University of South Florida.

(ERIC Document Reproduction Service No. ED

407 586)

3. Jezierski, E., Yajaman, N., Olsen, A., Gonzalez,

D., Cibraro, P., & Cazzulino, D. (2003). Design

and implementation guidelines for web clients.

Patterns and Practices Developer Center.

Available online from
http://www.only4gurus.net/microsoft/DIGWC.pdf

4. Lobel, L. (2003). Managing session state on the

client. Available online from

http://www.ftponline.com/vsm/2003%5F09/mag

azine/columns/aspnet/

5. Luce, T. (2005). Moving the senior development

class from web development to life cycle

development—A case for Visual Studio 2005,

Issues in Information Systems, VI, (1), 114-120.

6. Markus, M. L. (2000). Paradigm shifts—e-

business and business / systems integration.

Communications of the AIS, 4(10), 1-45.

7. Skonnard, A. (2005). The birth of web services.

from

http://msdn.microsoft.com/webservices/understa

nding/default.aspx?pull=/msdnmag/issues/02/10/

xmlfiles/default.aspx

8. Tiobe. (2006). Programming community index

for February 2006.

9. Visual Studio 2005 Documentation for Session

Variables.

10. Visual Studio 2005 Documentation for View

State.

11. Vorobiov, G., Dichter, C., Benninghoff, J., &

Hewett, C. (2003). Developing and optimizing

web applications on the asp.Net platform. Intel

Technology Journal, 7(1), 47-59.

0

50

100

150

200

250

99-00 00-01 01-02 02-03 03-04 04-05 05-06

Academic Year

E
n

r
o

ll
m

e
n

t MIS 220
MIS 225

MIS 320

MIS 400
MIS 420

