
Volume VIII, No. 2, 2007 20 Issues in Information Systems

Open Source Software Development: The New Training Ground?

 Dr. Hala Annabi -University of Washington, -hpannabi@u.washington.edu
Dr. Sean T. McGann, Ohio University, mcgann@ohio.edu

ABSTRACT
Individuals interested in software development are
joining Open Source Software (OSS) projects to learn
how to develop software. OSS projects provide an
experiential learning opportunity as learning occurs
through the actual building of code. Also, OSS
project are often globally distributed including
members from a variety of countries. This makes OSS
an especially suitable setting to prepare students for
participating in global software development
projects. This paper reports on findings from a study
analyzing learning processes in OSS project and how
these processes may serve as a training ground for
Information Systems students.

INTRODUCTION
OSS is a broad term used to describe software that is
developed and released under a form of “open
source” license. There are many licenses with a range
of different features, all of which allow inspection of
the software’s source code. There are thousands of
OSS projects that span a range of applications; the
Linux operating system and the Apache Web Server
are probably the most well-known. Many OSS
groups have been highly successful in meeting the
challenges of developing large and complex software
system.

What is perhaps most interesting about OSS for IS
educators is that OSS projects are recognized as a
medium through which individuals and groups may
“acquire and develop new skills and experiences” in
a global team [1]. In the current digital environment
and due to the open nature of OSS projects,
individuals of various types and levels of skills and
interests may collaborate to produce software. This
collaboration provides an informal learning ground
where intentional and unintentional learning occurs.
Members of the OSS community, particularly non-
experts observe and interact with experts and other
non-experts engaged in software development
projects. As well, individuals are exposed to
developers from various countries and geographic
regions. These interactions assist individuals in
further developing their skills and understanding of
software development while working in a global
context. Specifically, OSS projects have been helpful
to teenager, young college students and professionals.
Tuomi [2] noted that "[OSS] projects have also

created large pools of highly skilled software
professionals, often through a somewhat miraculous
alchemy that has transformed teenagers into globally
leading system architects, sometimes with little
supporting formal computer education”.

Reports suggest that a significant percentage of OSS
participants are under the age of 22 in support of
Tuomi’s observations. A survey conducted by
University of Maastricht (International Institute of
Infonomics) and Berlecon Research GmbH in 2002
(included 2784 responses from individuals engaged
in OSS) indicated that respondents started working
with open source at the age of 22.9 (median 22.00):
“7% started below an age of 16 years, one third was
between 16 and 20 years old, another third between
21 and 25, and a quarter was more than 26 years old
when starting OS/FS development” [3]. The report
also indicated that 83% of all respondents were IT
professionals, and students represented the second
largest group at 16%. In a different survey, Robles et
al [4] report among their sample: 37.2% of
respondents are less than ‘college graduate’, and
54.6% are less than ‘university graduate’. Thus, it is
not surprising the University of Maastricht’s report
indicated that the initial motivation for participating
in OSS projects stems from a desire to learn. The
report “…found an initial motivation for participation
in the OS/FS community that rather aims at
individual skills and the exchange of information and
knowledge with other developers, but over time a
maturing of the whole community with regard to
both, commercial (material) and political aspects. To
learn and to share knowledge have also been the most
important issues of OS/FS developers' expectations
from other developers.”

These findings raise the question of whether OSS
projects could become the new training/learning
ground for software development’s young
professionals and students. These ideas have
significant implications to IS education. Before
reaching any conclusions regarding OSS as a learning
environment we must first understand the nature of
learning in this environment and how we can best
utilize it in our formal educational setting. Two
specific questions to start off with are:
1. What is the nature of learning process in OSS?

https://doi.org/10.48009/2_iis_2007_20-25

Open Source Software Development: The New Training Ground?

Volume VIII, No. 2, 2007 21 Issues in Information Systems

2. What are the benefits and limitation of the
learning process from an educational
perspective?

This paper explores the first question by drawing on a
study of the learning process in OSS [5]. Findings
from the first question will guide our discussion of
the 2nd and 3rth questions.

STUDY BACKGROUND
The study is an in-depth investigation of the Apache
Web Server, a successful OSS project during the first
year of development. The study was guided by an
interdisciplinary theoretical framework to explain the
process through which groups and individuals of OSS
projects learn. Drawing on multiple areas of study,

the framework uses an input-process-output structure
that integrates four research strands: organizational
learning, shared mental models, group research, and
asynchronous learning networks. The framework
includes group structure, organizational level, and
group design inputs (see figure 1). These inputs affect
the nature of learning opportunity episodes (LOE)
(triggers, process and outcomes) in the group which
include the group learning process. The learning
process results in group and individual learning. The
framework indicates that outcomes of learning
recursively affect group structure inputs. Details of
the framework and study are beyond the scope of this
paper due to space limitations. Please refer to Annabi
[5, 6] for more on the study.

Figure 1 The Learning Process in Open Source Software Groups [5]

METHODS
This study employed a qualitative case study design
to better understand the phenomenon of learning.
More specifically, we employed a single embedded
case study design, based on a theoretical sample
strategy for case selection [7]. For details of the
method and rational to use this design please refer to
Annabi [5, 6]. The embedded unit of analysis is the
learning opportunity episode (LOE) which is a group
event that occurs over time as a result of a learning
trigger [5, 6]. The study developed and used three

content analytic frameworks to analyze OSS group
interaction from the group’s mailing list to explore
the learning process in these groups. The content
analytic frameworks revealed learning behaviors and
practices and factors that impede or enhance learning
in OSS groups.

RESULTS AND DISCUSSION

The Apache group had no formal role structure,
procedures, or guidelines to guide group

Open Source Software Development: The New Training Ground?

Volume VIII, No. 2, 2007 22 Issues in Information Systems

membership, rules for task management, coding style
and structure, system requirements or work plans at
the start of the project. Individuals interested in the
project joined a mailing list (new-
httpd@hyperreal.com) where members contributed
ideas, code, bug report and bug fixes based on needs
and interests. During the period of observation, 6,649
messages were posted to the mailing list, and the
group produced 38 versions of Apache as a result of
236 of patches, bug fixes, bug reports, and
documentation. Messages posted to the mailing list
and code submissions came from 8 core developers
(Apache experts) and 46 active (co-developers) and
occasional (active users) contributors (included both
expert software developers and novices). The study
identified 178 LOE. In the following section we will
report on the characteristics of group learning process
observed in the 178 LOEs analyzed in the study.

Q1 - What is the nature of the learning process in
OSS groups?
Learning in the Apache Web Server project was a
complex and latent phenomenon. Learning occurred
within a social process focused on either developing
the product (e.g. writing code and documentation) or
developing processes by which to develop the code
(e.g. coordinating efforts). Of the 178 episodes
collected, 28% focused exclusively on process, 44%
focused exclusively on product, and 28% focused on
both process and product. Eighty-six percent of
learning group activities involved developing shared
mental models of the code, resulting in various code
releases. This is where most learning occurred as
experts explained the structure of the code and the
various modules to each other and novices joining the
group. Experts often explained the rational for the
structure of the code and various coding practices
they adopt. As well, experts and novices often
assisted each other to further develop their ideas and
address problems by pooling their ideas and skills.
They sometimes did so by presenting lessons learned
from other projects and contexts. In addition to
developing the code, the group developed some rules
and guidelines for coordinating individual efforts of
developers (e.g. voting procedures, numbering
scheme) to produce quality product. Lastly, different
individuals exercised their abilities to manage various
stakeholders in the project. Specific characteristics of
interest to IS educators are elaborated on in the next
two sections.

Experiential learning
Learning activities were embedded in getting the job
done. There were no formal learning activities (e.g
classes or seminars). As suggested earlier, our

analysis discovered that learning opportunities had a
focus on either developing the group product (e.g.
writing code and documentation), developing
processes for producing the product (e.g. contribution
guidelines, voting procedures), or developing both
product and process. Lessons learned regarding the
product focused on coding style, the way function
and modules should work and operate, assessing
quality, and overall systems design. Knowledge was
shared through writing and examining code. As
developers write the code they learn individually.
Other developers also learn by examining the code
written by other individuals. Discussions about the
code provided a reflective space for both the writer
and the examiners of the code. This does not
necessarily occur for every patch. These discussions
tended to happen for complex and critical modules
the most. All involved and interested in developing
the code had the opportunity to question errors or
gaps in their understanding; they also had a chance to
share their knowledge and understanding.

In addition to learning about writing the code,
individuals learned about the process through which
code was developed. Apache project members, at
various stages of development, examined the
processes by which they coordinated their efforts,
planned for release and marketing of releases, invited
members to participate, and maintained a productive
social environment. Things that often came into play
were issues of varying cultural context (e.g.
terminology and metaphors used, social norms, work
norms), varying individual expertise and interests,
managing time zones, and differing holidays. At
times, members had to manage conflict as well.

Group interaction is necessary for learning
Figure 2 suggests that the distribution of LOE is
correlated with the distribution of level of interaction
over time. This further suggests that for learning to
occur in the group, the group has to interact. Periods
marked by limited group interaction (operationalized
by number of messages) are also associated with
periods of fewer learning opportunities. In analyzing
the content of group interaction we found that there
are a number of behaviors necessary to facilitate
learning in the group. In addition to writing code and
documentation, individuals learned and “taught”.
Learning and teaching behaviors fell into three
categories; critical analysis, discussion of strategy,
and developing shared mental models (for a detailed
list of these behaviors please refer to Annabi [5]).
These behaviors focused on sharing the knowledge
individuals hold with the group as they relate to the
code. As well, these behaviors focused on explaining
the concepts to others in the context of developing

Open Source Software Development: The New Training Ground?

Volume VIII, No. 2, 2007 23 Issues in Information Systems

the code and coordinating efforts. Experts in
particular modeled how to appropriately explain the
code structure and programming practices using
behaviors that education literature highlights as
effective teaching and knowledge sharing behaviors.
More specifically, experts confirmed understanding
by asking and answering questions, sharing war
stories, presenting content from external knowledge

sources, and identifying and clarifying
misconceptions. As well, experts models leadership
behavior by attending to social needs of a global
group membership by addressing conflict, injecting
affective behaviors to group interactions, and
appreciating and supporting team members
contributions.

0

200

400

600

800

1000

1200

Marc
h

Apri
l

May
Ju

ne Ju
ly

Aug
us

t

Sep
tem

be
r

Octo
be

r

Nov
em

be
r

Dec
em

be
r

N
um

be
r o

f P
os

tin
gs

Activity
Learning

Alpha
1st Public elease
Apache 0.62

Beta
Apache Rewrite

Public Release of (rewrite) Apache 0.8

Stable
Apache
1.0

Figure 2 Distribution of Learning Opportunity Episodes vs. Level of Interaction Over Time [5]

Analysis of group interactions also revealed the
importance of having the right mix of expertise. The
relevant expertise is important in two ways, to
identify when errors or misunderstanding occur, or to
identify when a task could not be done for lack of
expertise. There were instances in the project where
misinformation was shared where experts played a
significant role in correcting. If the right expertise
was not present, errors would have persisted and
group frustrations would have elevated. Another
instance, experts recognized the lack of expertise.
This is especially important from an educational and
learning perspective so as “ineffective” practices do
not persist.

Facilitators of the learning process
Most contributions to learning opportunity episodes
and code development in our study came from core-
developers. Seventy-six percent of mailing-list
postings (containing the learning behaviors discussed
in the previous section) and 72% of code submissions
were made by core-developers (the experts in the
project). Events that triggered learning in Apache
were generated from core-developers, as 75% of
triggers were internal learning triggers. We also

observed the movement of co-developers to being
part of the core development group. Similarly, we
observed active users becoming more active and
becoming co-developers. This movement was
indicated by an increase in these individuals
contribution to the code and their contribution to the
learning process by increasing their sharing
knowledge, confirming understanding, and conflict
resolution behaviors. This confirms Lave and
Wenger’s [8] Legitimate Peripheral Participation
model of learning. Novices observe experts until they
are capable of moving closer to the center of practice
and making significant contributions.

Q2 - What are the benefits and limitation of the
learning process from an educational perspective?
The findings of the study suggest that OSS provides
an interesting setting for a real world hands- on
learning experience. Learners are exposed to both the
technical and social aspects of developing software.
They learn how to write code, understand the design
of the software, while learning how to participate or
manage a global software development group. The
findings suggest that individuals can learn valuable
technical and social skills as well as learning

Open Source Software Development: The New Training Ground?

Volume VIII, No. 2, 2007 24 Issues in Information Systems

behaviors through legitimate peripheral participation.
Learners have access to experts developing code
through their observation of and interaction with the
development team and process. Learners learn
specific technical knowledge about writing code and
documentation as we well as behavior to share such
knowledge and analyze code. Additionally, they may
observe social skills necessary while participating in
such software projects.

Further, OSS provides lower barriers to entering a
project compared to projects in formal organizations
as any individual can participate as an active user if
they wish. Since most of the projects are conducted
in an independent and distributed environment,
individuals having access to information technologies
do not have to relocate or change their work or
school schedules.

The challenges OSS provides to an effective learning
environment are significant. Although the capital
costs may be low, there is a significant learning curve
associated with these projects as there is often little
documentation on the overall system design or
documentation.. Necessary for overcoming this
obstacle is the support of the core developers (the
experts). The core developers have a significant role
to play in explaining the code and the appropriate
practices. In Apache, the core group of developers
where both knowledgeable of the code, and had the
skills to explain it to new comers and to each other.
This is not necessarily the case in most OSS projects.
There is a need to provide the support for learners in
these instances. If the appropriate support in
explaining the conceptual foundation to the technical
process in which they engage, their learning
experience becomes limited.

Also noteworthy is that fact that some social
practices shared are sometimes ineffective or
inappropriate and become a liability for the new
learners. Particularly, the informal nature of the
environment most often does not emulate a formal
system development business environment in that
there is often no explicit system design, no deadlines,
informal project management (individuals do the
tasks that interest them).

CONCLUSION

There is no doubt that OSS development has the
potential for providing an effective learning
experience for IS students interested or engaged in
software development. Participating in OSS projects
provide an alternative or supplemental low cost real-

world experience. Students are exposed to both the
technical and social aspects of developing software in
a global team. The challenges highlighted above
when the appropriate expertise is not available
however, do pose a challenge. Our students and
professionals are participating in these experiences
regardless of these challenges and are sometimes
affected by these limitations.

To capitalize on the benefits and minimize the
limitations IS educators can potentially fill a role.
There are two aspects that we must consider. First,
since many of our students, current young
professionals, and future professionals engage in
these groups, we must define our role in educating
our students and future professionals in the OSS
environment. Are there particular skills we can
provide to make OSS participant better aware of the
nature of learning in these environments? Can we
utilize the learning behaviors identified from our
study and similar studies and teach them to our
students and professionals?

Secondly, there is potential for IS programs to
integrate the experience of participating in OSS
projects into the curriculum. This could be done as an
experiential piece of the curriculum to augment or
substitute for internships. If this option is pursued, it
is pivotal that the learning experience be structured in
a way that attention is given to both the technical and
social aspects of this experience. Conceptual content
for both topics should be provided as part of the
formal learning experience. Also, the formal learning
experience provided should contain a reflection cycle
where instructors and other students reflect together
on the nature of activities and learning taking place in
these projects.

In conclusion, OSS is an interesting and important
phenomenon. The nature of learning in OSS projects
provides potential benefits for IS education. These
potential benefits however come with some
limitations. IS educators must further understand how
learning is taking place in this environment. As well,
it is important that we be creative in imagining the
possibilities for capturing the benefits of the learning
opportunity OSS provides. Consequently, further
investigation and experimentation with these learning
environments can provide exciting learning
opportunities for IS education.

REFERENCES

1. Arent, J. and Nørbjerg, J. (2000) Software

Process Improvement as Organizational

Open Source Software Development: The New Training Ground?

Volume VIII, No. 2, 2007 25 Issues in Information Systems

Knowledge Creation: A Multiple Case Analysis.
Proceedings of the 33rd Hawaii International
Conference on System Sciences.
http://doi.ieeecomputersociety.org/10.1109/HIC
SS.2005.57e

2. Tuomi, I. (2005) What did we learn from open
source? First Monday. 10(10).
http://www.firstmonday.org/issues/special10_10/
tuomi/index.html

3. University of Maastricht (International Institute
of Infonomics) and Berlecon Research GmbH.
(July 2002). FLOSS Final Report.
http://www.infonomics.nl/FLOSS/report/

4. Robles, G., Scheider, H., Tretkowski, I. and
Weber, N. (2001). Who Is Doing It?: A Research
on Libre Software Developers.
http://widi.berlios.de/paper/study.html

5. Annabi, H. (2005). Moving from Individual
Contribution to Group Learning: The Early
Years of the Apache Web Server. Unpublished
Ph.D. Dissertation, Syracuse University,
Syracuse, NY.

6. Annabi, H., Crowston, K. and Heckman, R
(2006) From Individual Contribution to Group
Learning: The early Years of Apache Web
Server, The Second International Conference on
OSS, Lake Como Italy, June.

7. Yin, R. 1984. Case Study Research. Sage
Publications, Beverly Hills, CA.

8. Lave, J., & Wenger, E. (1991). Situated
learning: Legitimate peripheral participation.
Cambridge: Cambridge University Press.

