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ABSTRACT 

Although the design and implementation of parallel 
processing infrastructure is not considered a 
mainstream IS topic, a working knowledge of its 
capabilities can have an important influence on 
improving the design of on-line systems. In order to 
illustrate some of the advantages and limitations of 
using parallel processing in information systems two 
experiments were run to collect multiple node scaling 
information. Specifically, packet inter-arrival data 
was collected and analyzed for a message passing 
interface (MPI) and an HTTP problem that simulated 
packet movement in an enterprise level LAN test-bed. 
The parallelization method that we employed broke 
the problem into N subparts based in the number of 
processors used. Inter-processor communication was 
required whenever a processor needed to interact 
with another one to help solve the application. That 
communication was relayed via the MPI protocol 
using TCP packets with intensities in .0005 second 
range. Experimental trials were run on various 
platforms: from 2 to 12 two processor units for MPI, 
and 8 and 16 units for HTTP. In the MPI experiment, 
although the CPU time continued to drop as 
additional units were added, the elapsed time only 
dropped to the 4 unit level and then increased 
thereafter. In the HTTP experiments the two 
switch/server model provided only a slightly better 
performance than the one switch/server model. 
Keywords: computer network performance, 
distributed systems, parallel processing 
infrastructure, MPI, HTTP. 

INTRODUCTION 

The concept of a cluster allows multiple hosts to 
work together to solve complex problems. This 
inexpensive multiprocessor environment has often 
been viewed as a poor man’s supercomputer. 
However, because the performance of such a cluster 
is very dependent on the underlying network 
infrastructure understanding the network topology 

and bandwidth is critical to analyzing cluster 
performance.  

Predicting packet inter-arrival patterns and the effect 
on network performance has been a challenging 
problem for many years [8] on a regular network, but 
the many to many communication pattern of clusters 
make this problem even more challenging. This can 
be explained in part by the failure of packet 
distribution to mimic the theoretically expected 
Poisson distribution. A number of studies confirm 
that the actual inter-arrival distribution of packets is 
not exponential as would be expected in the classical 
model [7, 8, 13, and 6].  

It has been recognized that the low cost and 
availability of workstation based LANs as a parallel 
processing environment is a viable and inexpensive 
solution [14].   
Historically, at 10Mbs there was a concern that the 
LAN environment had inadequate bandwidth to 
support inter-process communication [3]. It has been 
shown that workstation clusters if interconnected via 
a high speed LAN can be an effective parallel 
processing environment [2]. In recent years, the 
hardware available to support workstation based 
LANs has improved, but many feel that relying on 
hardware alone may not ensure adequate 
performance for the demanding applications of the 
future [1]. 

It is widely accepted that a response in a client server 
system must be completed in a couple of seconds or 
less if end-user confidence is to be maintained. In the 
client/server world the problem to be solved requires 
at least two and probably more computers. Further, 
the performance and interaction between/among 
those computers is very much influenced by network 
connectivity. This paper attempts to provide scaling 
data related to splitting complex problems, so that 
ultimately the end-user response times can remain in 
a reasonable range. If multiple computers must work 
in concert to solve a problem often the inter-
processor communication can become a bottleneck, 
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thus network configurations and different protocols 
were tested as well.   
 
Too often it is assumed that putting two processors 
on the job instead of one will double performance. 
Unfortunately, that is seldom the case and, hopefully, 
the data reported herein will help clarify that myth. 
Further, it is also important to understand that not 
every bit transferred on the network is a data bit. 
Network traffic contains bits that are the actual 
payload and headers containing management 
information. The management bits, which are in 
essence overhead, provide a means to address 
performance optimization on the network software 
level [11]. This method appears to offer an approach 
to study the efficiency of network connectivity in a 
distributed computer grid.  
 
There are several components that can be studied in 
optimizing performance on the network protocol 
level, such as optimizing the buffers, minimizing 
management traffic, and scheduling applications. In 
many instances planning and implementation of such 
methods can be improved by studying historical 
network traffic data obtained on the system in 
question. Truong and Fahringer [12] are proponents 
of such methodology and suggest that more research 
is needed that starts with the analysis of experimental 
data. They further state that such research will require 
better planning in regard to how to capture, store and 
analyze such data. 
 

EXPERIMENTAL SCENARIOS 
 
This paper looked at two different data sets: one in a 
parallel processing environment using a message 
passing interface (MPI), and another in a web 
environment using multiple replicated web servers 
accessed by multiple web clients.  
 
In the first scenario workload performance data was 
collected from a live network in which parallel 
molecular modeling software was used to generate 
the network workload. The MOLDY program [10] 
was used to generate the MPI requests. In this 
program the number of server machines can be 
programmed, and thereby the offered intensity can be 
varied. TCPdump was used to collect the 
performance data. The number of servers was varied 
so that performance scaling could be evaluated. The 
following data was reported for each test run:  CPU 
time in seconds, elapsed time in seconds, number of 
packets in sample, mean inter-arrival time, mean 
throughput in bytes and packet intensity in packets 
per second.  
 

In the second scenario workload performance data 
was collected from a live network in which a web 
workload generator was used to create the network 
workload. The SEIGE program [4] was used to 
generate the WWW requests. In this program the 
number of server/client machines can be programmed 
and thereby the offered intensity can also be varied. 
Similarly to the first scenario, TCPdump was used to 
collect the performance data, and the number of 
servers was varied so that performance scaling could 
be evaluated. The following data was reported for 
each test run:  number of packets in sample, mean 
inter-arrival time, mean throughput in bytes and 
packet intensity in packets per second. 

 
NETWORK CONFIGURATIONS 

 
The basic configuration of network follows. Two to 
sixteen Intel based hosts were used to run the 
experiment. Each host was configured with two 550 
MHz CPUs that utilized symmetric multi-processing 
as supported by the Linux operating system. Each 
unit ran its part of the MOLDY or SEIGE program as 
required and housed the TCPdump program which 
collected packet traffic. Each unit was connected to a 
Force 10, E300 switch (a high end Enterprise level 
switch) at 100Mbs.  

 
DATA COLLECTION STRATEGY 

 
The parallel test-bed was programmed using either 
the MOLDY or SEIGE software. TCPdump was run 
on each unit and therefore traffic for each unit was 
collected locally. These files were later linked 
together by combining the files from each unit and 
then sorting by time stamp. The time on each unit 
was synchronized via a time server. Once combined 
the file could be analyzed and the inter-arrival times 
and throughput statistics were available from two to 
sixteen units. Two different sets of trials were run; 
one for the MPI problem the other for the WWW 
problem.  
 
The first step was to obtain performance data on the 
live network for a range of different number of 
processors. Thus, each problem was solved by 
varying the number of units. In the MPI data the 
number of units was varied from 2 to 12. For the 
WWW traffic the number of servers was fixed at one 
per switch and the number of clients per switch was 
varied between 8 and 16 units. The results are listed 
in Tables 1 and 2. 
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ANALYSIS 
 
The two tables provide strikingly different results, 
except for that in both cases the network load was 
quite intense. For the MPI data the CPU time 
required to solve the problems decreases as additional 
units are added. However, there is not a linear 
decrease. In fact, the decrease is only about three 
times when varying from 2 to 12 units. Elapsed time 
also exhibited similar traits within the two samples. 
In both cases it was reduced when four units were 
used, but increased steadily as additional units were 
added. Interestingly, packets in the sample provide a 
clue as to why the elapsed time increases when more 
than four units are utilized. When the number of units 

is increased from 4 to 6 the number of required 
packets about doubles, which results in significant 
communication overhead. Mean packet inter-arrival 
times are quite intense and continue to shorten as 
units are added. Throughput and packet intensity also 
exhibited for the most part an increasing intensity as 
units were added. In the WWW data, the average 
packet size was rather stabile which makes sense if 
one understands the profile of the HTTP protocol. 
Inter-arrival time was more intense for the 16 client 
trials than the 8 client trials. Distributing the clients 
across two switches increased the intensity slightly. 
Throughput and packet intensity were both larger in 
the 16 client trials and highest per capita in the two 
switch trials. 

 
 

Table 1. MPI DATA.  
Timings and Means for Packet Arrival, Throughput, and Intensity 

10,000 Iterations 
 

 
2 

concurrent 
hosts 

4 concurrent 
hosts 

6 concurrent 
hosts 

8 concurrent 
hosts 

10 
concurrent 

hosts 

12 
concurrent 

hosts 

CPU Time 141.84 91.06 67.06 59.58 50.70 50.22 

Elapsed Time 245.99 200.4 227.58 263.91 259.14 264.85 

Packets in 
Sample 201,361 191,377 470,706 469,598 602,578 603,034 

Inter-arrival 
time .00122 .00104 .000483 .000562 .000430 .000439 

Throughput 575,668 707,134 1,265,710 1,090,568 1,396,049 1,337,841 

Packet 
Intensity 817.64 960.42 2,069.78 1,771.63 2,327.71 2,231.22 
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Table 2. WWW Data.  
Means for Packet Arrival, Throughput, and Intensity 

 

 

8 clients 
1 switch 

16 clients 
1 switch 

8  clients 
2 switches 

16 clients 
2 switches 

Average packet size 1,022 1,028 1,029 1,031 

Packets in Sample 100,000 100,000 100,000 100,000 

Inter-arrival time .000439 .000351 .000410 .000300 

Throughput 1,350,370 1,576,571 1,461,096 1,788,513 

Packet Intensity 1,320 1,532 1,770 1,733 

 
DISCUSSION 

 
Within the MPI data in terms of providing an 
advantage in solving the problems in less time the 
method used fails when more than four units are 
utilized. While the reduction in the CPU time is 
encouraging as more units are added, the increase in 
network traffic offsets this advantage. Therefore, for 
the algorithm to be effective it needs to be 
reevaluated in terms of the massive amount of inter-
processor communication utilized. However, if the 
problem was run on cluster that was not dedicated 
only to solving this problem, but had several parallel 
problems running at the same time, the saving 
observed in CPU time herein would be attractive. 
 
Within the WWW data it appears that the test bed 
handled the traffic of up to 8 clients well. 
Distributing the data across two switches and hence 
two replicated servers only provides a slight increase 
in performance. It would be interesting to increase 
the workload well beyond the 16 clients to see how 
the test-bed might scale under increasing loads. 
 
In the MPI data it appears that there are several other 
things to consider besides a redesign of the 
distribution algorithm. A network speedup to 1Gbs 
would have limited effect because the average 
throughput observed did not exceed 1.4 MBs. Also of 
note is the loss in packet payload efficiency as units 
are added. The packet average is about 700 bytes in 
the two and four unit tests, but it drops off to about 
600 bytes in the 12 unit experiment. This may in part 
be explained by the overhead of setting up and 
maintaining the additional TCP connections used by  

 
MPI. There may be some promise in adapting the 
software to use PVM since it is based on UDP which 
is connectionless. Guster, Al-Hammah, Safonov, and 
Bachman [4] found that PVM could greatly reduce 
the communications overhead when compared to 
MPI. Also, perhaps a supercomputer would help in 
this regard because the processors would all be in the 
same box and connected via a high speed bus. 
However, an analysis of the number of management 
packets (such as TCP syn) in the data revealed that 
they typically accounted for only .05% of the total 
packets which may negate the potential of PVM. A 
further analysis of the packet sizes revealed that there 
were often a large number of small packets. In fact 
the number of packets less than 100 bytes averaged 
(payload less than 40 bytes) around 35% across the 
data and in some cases exceeded 45% within a single 
trial. These values help explain why the transfer rates 
observed were well below Ethernet’s maximum of 
1514 bytes. 
 
Although a reduction in elapsed time was obtained up 
to the four unit level the scaling beyond that point 
was counter productive. Even though the decrease in 
CPU time is encouraging it is the elapsed time that 
counts on the end-user level. For this particular 
problem the effectiveness of using CPU distributed 
across a LAN is negated by the communication 
overhead. It appears this problem is quite complex 
and is a function of the time any CPU has to wait for 
a piece of the “puzzle” from another CPU. Speeding 
up the network may have some slight effect, but the 
transfer rates never exceed 1.5MBs (12Mbs) on a 
100Mbs network. Therefore, more research is needed 
that addresses alternates to MPI (such as PVM and 
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Open MP) and reevaluates the algorithm used to 
distribute the workload among the CPUs. 

Although the MPI and WWW data come from vastly 
different applications it is interesting to note that the 
throughput at the 8 unit (or client) level is similar. 
This level could be viewed as the concatenated 
volume that might be expected from 8 of the type of 
computers used in this experiment. 
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