
Volume VIII, No. 2, 2007 367 Issues in Information Systems

THE EFFECTS OF CLUSTER SIZE ON PACKET INTER-ARRIVAL PATTERNS AND
INTENSITY IN A DISTRIBUTED SYSTEM

Dennis Guster, St. Cloud State University, MN, USA, dcguster@stcloudstate.edu
Paul Safonov, St. Cloud State University, MN, USA, safonov@stcloudstate.edu

Renat Sultanov, St. Cloud State University, MN, USA, rasultanov@stcloudstate.edu
Mark Nordby, St. Cloud State University, MN, USA, noma0401@stcloudstate.edu

ABSTRACT

Although the design and implementation of parallel
processing infrastructure is not considered a
mainstream IS topic, a working knowledge of its
capabilities can have an important influence on
improving the design of on-line systems. In order to
illustrate some of the advantages and limitations of
using parallel processing in information systems two
experiments were run to collect multiple node scaling
information. Specifically, packet inter-arrival data
was collected and analyzed for a message passing
interface (MPI) and an HTTP problem that simulated
packet movement in an enterprise level LAN test-bed.
The parallelization method that we employed broke
the problem into N subparts based in the number of
processors used. Inter-processor communication was
required whenever a processor needed to interact
with another one to help solve the application. That
communication was relayed via the MPI protocol
using TCP packets with intensities in .0005 second
range. Experimental trials were run on various
platforms: from 2 to 12 two processor units for MPI,
and 8 and 16 units for HTTP. In the MPI experiment,
although the CPU time continued to drop as
additional units were added, the elapsed time only
dropped to the 4 unit level and then increased
thereafter. In the HTTP experiments the two
switch/server model provided only a slightly better
performance than the one switch/server model.
Keywords: computer network performance,
distributed systems, parallel processing
infrastructure, MPI, HTTP.

INTRODUCTION

The concept of a cluster allows multiple hosts to
work together to solve complex problems. This
inexpensive multiprocessor environment has often
been viewed as a poor man’s supercomputer.
However, because the performance of such a cluster
is very dependent on the underlying network
infrastructure understanding the network topology

and bandwidth is critical to analyzing cluster
performance.

Predicting packet inter-arrival patterns and the effect
on network performance has been a challenging
problem for many years [8] on a regular network, but
the many to many communication pattern of clusters
make this problem even more challenging. This can
be explained in part by the failure of packet
distribution to mimic the theoretically expected
Poisson distribution. A number of studies confirm
that the actual inter-arrival distribution of packets is
not exponential as would be expected in the classical
model [7, 8, 13, and 6].

It has been recognized that the low cost and
availability of workstation based LANs as a parallel
processing environment is a viable and inexpensive
solution [14].
Historically, at 10Mbs there was a concern that the
LAN environment had inadequate bandwidth to
support inter-process communication [3]. It has been
shown that workstation clusters if interconnected via
a high speed LAN can be an effective parallel
processing environment [2]. In recent years, the
hardware available to support workstation based
LANs has improved, but many feel that relying on
hardware alone may not ensure adequate
performance for the demanding applications of the
future [1].

It is widely accepted that a response in a client server
system must be completed in a couple of seconds or
less if end-user confidence is to be maintained. In the
client/server world the problem to be solved requires
at least two and probably more computers. Further,
the performance and interaction between/among
those computers is very much influenced by network
connectivity. This paper attempts to provide scaling
data related to splitting complex problems, so that
ultimately the end-user response times can remain in
a reasonable range. If multiple computers must work
in concert to solve a problem often the inter-
processor communication can become a bottleneck,

https://doi.org/10.48009/2_iis_2007_367-371

The effects of cluster size on packet inter-arrival
Patterns and intensity in a distributed system

Volume VIII, No. 2, 2007 368 Issues in Information Systems

thus network configurations and different protocols
were tested as well.

Too often it is assumed that putting two processors
on the job instead of one will double performance.
Unfortunately, that is seldom the case and, hopefully,
the data reported herein will help clarify that myth.
Further, it is also important to understand that not
every bit transferred on the network is a data bit.
Network traffic contains bits that are the actual
payload and headers containing management
information. The management bits, which are in
essence overhead, provide a means to address
performance optimization on the network software
level [11]. This method appears to offer an approach
to study the efficiency of network connectivity in a
distributed computer grid.

There are several components that can be studied in
optimizing performance on the network protocol
level, such as optimizing the buffers, minimizing
management traffic, and scheduling applications. In
many instances planning and implementation of such
methods can be improved by studying historical
network traffic data obtained on the system in
question. Truong and Fahringer [12] are proponents
of such methodology and suggest that more research
is needed that starts with the analysis of experimental
data. They further state that such research will require
better planning in regard to how to capture, store and
analyze such data.

EXPERIMENTAL SCENARIOS

This paper looked at two different data sets: one in a
parallel processing environment using a message
passing interface (MPI), and another in a web
environment using multiple replicated web servers
accessed by multiple web clients.

In the first scenario workload performance data was
collected from a live network in which parallel
molecular modeling software was used to generate
the network workload. The MOLDY program [10]
was used to generate the MPI requests. In this
program the number of server machines can be
programmed, and thereby the offered intensity can be
varied. TCPdump was used to collect the
performance data. The number of servers was varied
so that performance scaling could be evaluated. The
following data was reported for each test run: CPU
time in seconds, elapsed time in seconds, number of
packets in sample, mean inter-arrival time, mean
throughput in bytes and packet intensity in packets
per second.

In the second scenario workload performance data
was collected from a live network in which a web
workload generator was used to create the network
workload. The SEIGE program [4] was used to
generate the WWW requests. In this program the
number of server/client machines can be programmed
and thereby the offered intensity can also be varied.
Similarly to the first scenario, TCPdump was used to
collect the performance data, and the number of
servers was varied so that performance scaling could
be evaluated. The following data was reported for
each test run: number of packets in sample, mean
inter-arrival time, mean throughput in bytes and
packet intensity in packets per second.

NETWORK CONFIGURATIONS

The basic configuration of network follows. Two to
sixteen Intel based hosts were used to run the
experiment. Each host was configured with two 550
MHz CPUs that utilized symmetric multi-processing
as supported by the Linux operating system. Each
unit ran its part of the MOLDY or SEIGE program as
required and housed the TCPdump program which
collected packet traffic. Each unit was connected to a
Force 10, E300 switch (a high end Enterprise level
switch) at 100Mbs.

DATA COLLECTION STRATEGY

The parallel test-bed was programmed using either
the MOLDY or SEIGE software. TCPdump was run
on each unit and therefore traffic for each unit was
collected locally. These files were later linked
together by combining the files from each unit and
then sorting by time stamp. The time on each unit
was synchronized via a time server. Once combined
the file could be analyzed and the inter-arrival times
and throughput statistics were available from two to
sixteen units. Two different sets of trials were run;
one for the MPI problem the other for the WWW
problem.

The first step was to obtain performance data on the
live network for a range of different number of
processors. Thus, each problem was solved by
varying the number of units. In the MPI data the
number of units was varied from 2 to 12. For the
WWW traffic the number of servers was fixed at one
per switch and the number of clients per switch was
varied between 8 and 16 units. The results are listed
in Tables 1 and 2.

The effects of cluster size on packet inter-arrival
Patterns and intensity in a distributed system

Volume VIII, No. 2, 2007 369 Issues in Information Systems

ANALYSIS

The two tables provide strikingly different results,
except for that in both cases the network load was
quite intense. For the MPI data the CPU time
required to solve the problems decreases as additional
units are added. However, there is not a linear
decrease. In fact, the decrease is only about three
times when varying from 2 to 12 units. Elapsed time
also exhibited similar traits within the two samples.
In both cases it was reduced when four units were
used, but increased steadily as additional units were
added. Interestingly, packets in the sample provide a
clue as to why the elapsed time increases when more
than four units are utilized. When the number of units

is increased from 4 to 6 the number of required
packets about doubles, which results in significant
communication overhead. Mean packet inter-arrival
times are quite intense and continue to shorten as
units are added. Throughput and packet intensity also
exhibited for the most part an increasing intensity as
units were added. In the WWW data, the average
packet size was rather stabile which makes sense if
one understands the profile of the HTTP protocol.
Inter-arrival time was more intense for the 16 client
trials than the 8 client trials. Distributing the clients
across two switches increased the intensity slightly.
Throughput and packet intensity were both larger in
the 16 client trials and highest per capita in the two
switch trials.

Table 1. MPI DATA.
Timings and Means for Packet Arrival, Throughput, and Intensity

10,000 Iterations

2

concurrent
hosts

4 concurrent
hosts

6 concurrent
hosts

8 concurrent
hosts

10
concurrent

hosts

12
concurrent

hosts

CPU Time 141.84 91.06 67.06 59.58 50.70 50.22

Elapsed Time 245.99 200.4 227.58 263.91 259.14 264.85

Packets in
Sample 201,361 191,377 470,706 469,598 602,578 603,034

Inter-arrival
time .00122 .00104 .000483 .000562 .000430 .000439

Throughput 575,668 707,134 1,265,710 1,090,568 1,396,049 1,337,841

Packet
Intensity 817.64 960.42 2,069.78 1,771.63 2,327.71 2,231.22

The effects of cluster size on packet inter-arrival
Patterns and intensity in a distributed system

Volume VIII, No. 2, 2007 370 Issues in Information Systems

Table 2. WWW Data.
Means for Packet Arrival, Throughput, and Intensity

8 clients
1 switch

16 clients
1 switch

8 clients
2 switches

16 clients
2 switches

Average packet size 1,022 1,028 1,029 1,031

Packets in Sample 100,000 100,000 100,000 100,000

Inter-arrival time .000439 .000351 .000410 .000300

Throughput 1,350,370 1,576,571 1,461,096 1,788,513

Packet Intensity 1,320 1,532 1,770 1,733

DISCUSSION

Within the MPI data in terms of providing an
advantage in solving the problems in less time the
method used fails when more than four units are
utilized. While the reduction in the CPU time is
encouraging as more units are added, the increase in
network traffic offsets this advantage. Therefore, for
the algorithm to be effective it needs to be
reevaluated in terms of the massive amount of inter-
processor communication utilized. However, if the
problem was run on cluster that was not dedicated
only to solving this problem, but had several parallel
problems running at the same time, the saving
observed in CPU time herein would be attractive.

Within the WWW data it appears that the test bed
handled the traffic of up to 8 clients well.
Distributing the data across two switches and hence
two replicated servers only provides a slight increase
in performance. It would be interesting to increase
the workload well beyond the 16 clients to see how
the test-bed might scale under increasing loads.

In the MPI data it appears that there are several other
things to consider besides a redesign of the
distribution algorithm. A network speedup to 1Gbs
would have limited effect because the average
throughput observed did not exceed 1.4 MBs. Also of
note is the loss in packet payload efficiency as units
are added. The packet average is about 700 bytes in
the two and four unit tests, but it drops off to about
600 bytes in the 12 unit experiment. This may in part
be explained by the overhead of setting up and
maintaining the additional TCP connections used by

MPI. There may be some promise in adapting the
software to use PVM since it is based on UDP which
is connectionless. Guster, Al-Hammah, Safonov, and
Bachman [4] found that PVM could greatly reduce
the communications overhead when compared to
MPI. Also, perhaps a supercomputer would help in
this regard because the processors would all be in the
same box and connected via a high speed bus.
However, an analysis of the number of management
packets (such as TCP syn) in the data revealed that
they typically accounted for only .05% of the total
packets which may negate the potential of PVM. A
further analysis of the packet sizes revealed that there
were often a large number of small packets. In fact
the number of packets less than 100 bytes averaged
(payload less than 40 bytes) around 35% across the
data and in some cases exceeded 45% within a single
trial. These values help explain why the transfer rates
observed were well below Ethernet’s maximum of
1514 bytes.

Although a reduction in elapsed time was obtained up
to the four unit level the scaling beyond that point
was counter productive. Even though the decrease in
CPU time is encouraging it is the elapsed time that
counts on the end-user level. For this particular
problem the effectiveness of using CPU distributed
across a LAN is negated by the communication
overhead. It appears this problem is quite complex
and is a function of the time any CPU has to wait for
a piece of the “puzzle” from another CPU. Speeding
up the network may have some slight effect, but the
transfer rates never exceed 1.5MBs (12Mbs) on a
100Mbs network. Therefore, more research is needed
that addresses alternates to MPI (such as PVM and

The effects of cluster size on packet inter-arrival
Patterns and intensity in a distributed system

Volume VIII, No. 2, 2007 371 Issues in Information Systems

Open MP) and reevaluates the algorithm used to
distribute the workload among the CPUs.

Although the MPI and WWW data come from vastly
different applications it is interesting to note that the
throughput at the 8 unit (or client) level is similar.
This level could be viewed as the concatenated
volume that might be expected from 8 of the type of
computers used in this experiment.

REFERENCES

1. Courson, M., Mink, A., Marcais, M. & B.
Traverse. (2000) “An automated benchmarking
toolset”, HPCN Europe, pp. 497-506.

2. Fahringer, T. & R. Prodan. (2002) “ZENTURIO:
An Experiment Management System for Cluster
and Grid Computing”, 4th International APART
Workshop, Euro-Par.

3. Fatoohi, R. & S. Weeratunga. (1994).
“Performance Evaluation of Three Dis-tributed
Computing Environments for Scientific
Applications”, Proceedings of
Supercomputing’94, pp. 400-409.
Fulmer, J. (2006), “SEIGE: An HTTP
Regression Tester and Benchmark Utility”,
http://www.joedog.org/Seige/Manual.

4. Guster, D., Al-Hamamah, A., Safonov, P. & E.
Bachman. (2003), “Computing and Network
Performance of A Distributed Parallel
Processing Environment Using the MPI and
PVM Communication Methods”, The Journal of
Computing Sciences in Colleges, 18(4), pp 248-
253.

5. Guster, D., Robinson, D. & M. Richardson.
(1999), “The Application of the Power Law
Process in Modeling the Inter-Arrival Times of
Packets in a Computer Network”, Midwest
Decision Sciences Institute, Springfield, IL,
April 22-24.

6. Krzenski, K. (1998), “The Effect of Varying the
Packet Inter-arrival Distribution in the
Simulation of Ethernet Computer Networks”,
unpublished graduate research project, St. Cloud
State University, MN.

7. Partridge, C. (1993), “The End of Simple Traffic
Models (Editor’s Note)”, IEEE Network, 7(5).

8. Popescu, A. (1994), “A Parallel Approach to
Integrated Multi-Gbit/s Communication over
Multiwavelength Optical Networks”, Ph.D.
dissertation, Royal Institute of Technology,
Stockholm.

9. Refson, K. (2000), “Moldy: a portable molecular
dynamics simulation program for serial and

parallel computers”, Computer Physics
Communications, 126 (310).

10. Riley, G. et al. (1997), “Performance
Improvement through Overhead Analy-sis: a
case study in molecular dynamics”, Proceedings
of 11th ACM International Conference on
Supercomputing, 36-43.

11. Truong, H. & T. Fahringer. (2003), “On
Utilizing Experiment Data Repository for
Performance Analysis of Parallel Applications”,
9th International EuroPar Conference
(EuroPar’03), LNCS, Klagenfurt, Austria,
Springer-Verlag.

12. Vandolore, B., Babic, G. & Jain, R. (1999),
“Analysis and Modeling of Traffic in Modern
Data Communications Networks”. A paper
submitted to the Applied Telecommunication
Symposi-um, 1999.

13. Vila-Sallent, J., Sole-Pareta, J., Jove, T. & J.
Torres. (1996), “Potential Performance of
Distributed Computing Systems over ATM
Networks”, INFOCOM'97.

