
Volume VIII, No. 2, 2007 280 Issues in Information Systems

THE EFFECT OF SEMANTIC KNOWLEDGE ON SOFTWARE
MAINTENANCE: AN EMPIRICAL STUDY

Sam Ramanujan, University of Central Missouri, ramanujan@ucmo.edu
Someswar Kesh, University of Central Missouri, kesh@ucmo.edu

ABSTRACT

A model for software maintenance based on the
Human Information Processing (HIP) model has
been developed and tested. Based on the results,
recommendations for further research as well as for
practitioners have been made.

Keywords: software maintenance, HIP, semantic
knowledge, programmer characteristics

INTRODUCTION

Software maintenance is an important, resource
consuming and expensive task. Therefore proper
resource allocation to maintenance activities is
extremely important. In this research, a model for
software maintenance that can assist in resource
allocation for maintenance activities has been
presented. Particular emphasis has been placed on
the semantic knowledge of programmers. Based on
this model, hypotheses relating to the programmer’s
semantic knowledge have been developed and tested.

THEORETICAL FOUNDATIONS OF THE
RESEARCH

Components of the HIP Model

This study uses the Human Information Processing
(HIP) model as the theoretical basis. The main
components of the HIP model are: sensory registers,
short-term memory (STM), long-term memory
(LTM) and buffer. Sensory registers exist for each of
the senses and have been given a variety of names by
psychologists; sense-information stores, iconic stores,
and precategorical stores. The icon and echo are the
two most extensively used sensory registers and they
correspond to our visual and auditory senses
respectively. This study focuses on the visual sensory
register, icon. In buffer memory, the information
from STM and LTM are integrated to build new
structures to generate a semantic structure for a
problem’s solution. This semantic structure is called
internal semantics. In case of learning, this semantic
structure is stored in LTM for further use
(Ramanujan and Cooper, 1994).

HIP Perspective on Software Maintenance

The program maintenance task can be broken into
three sequential subtasks, (i) program comprehension
(ii) program modification and (iii) program
composition. From a HIP perspective, these are
explained as follows:
Program Comprehension: During this stage, the
maintenance programmer creates a multilevel
semantic structure in the buffer of the problem using
existing syntactic and semantic structures in the
programmer’s LTM.
Program Modification: Program modification is
done in the buffer by synthesizing the semantic
structures of the existing programs and the required
modification(s). The output at this stage is a semantic
structure that constitutes the program specifications
of the modified program.
Program Composition: When a program
composition task is presented to the maintenance
programmer, the program specifications arrive in the
programmer’s buffer through STM. The program is
then analyzed and represented in terms of a “given
state” and a “desired state” (Wickelgren, 1974).

Characteristics of the Maintenance Task

The dependent variable used here is maintenance
effort. In this study, the dependent variable is the
time required to successfully maintain a program
since one of the components of quality, semantic
knowledge of programming structures, serves as an
independent variable. From a HIP perspective,
maintenance effort is determined by programmer
characteristics, program characteristics (Ramanujan
and Cooper, 1994, Alain 2002), and organizational
characteristics (Rainer 2003, Boehm-Davis 1992,).
These form the foundation for identifying the
independent variables in this study

Programmer Characteristics

The primary programmer characteristic in
maintenance is the semantic knowledge of the
programmer (Joergensen 2004, Rainer 2003,
Joergensen and Soerberg 2002). Programmers
possess high or low level semantic knowledge which

https://doi.org/10.48009/2_iis_2007_280-286

The effect of semantic knowledge on software
Maintenance: an empirical study

Volume VIII, No. 2, 2007 281 Issues in Information Systems

characterizes them as an expert or a novice. In this
research an instrument that classifies programmers
into experts and novices based on such factors such
as the size of the program, the variations in control
flow structures and the number of programs
maintained has been used. The characteristics of
semantic knowledge based on programmer’s
experience are also captured because theory suggests
that the type of experience dictates the level of
semantic knowledge.

Program Characteristics

The program characteristics considered are,
indentation, variable name mnemonicity, comments,
modularity, program size, and complexity of control
flow. Studies by Vessey and Weber (1984) show that
indentation reduces program effort. Similar results
were found for the other variables as well (Robbilard
et. al, 2004, Ko et. al, 2006).

Organizational Characteristics

Organizational Characteristics used are the effect of
time pressure, and request characteristics in terms of
the size of modification. Based on these, the
following hypotheses were tested.

HYPOTHESES

Hypothesis 1:

Subjects with a high level of semantic knowledge
will maintain a program in significantly less time
when compared to subjects with a low level of
semantic knowledge.

Hypothesis 2:
The difference in time taken to maintain a program
with a high level of control flow complexity and a
program with a low level of control flow complexity
will be significantly greater for subjects with a low
level of semantic knowledge.

Hypothesis 3:

For subjects with a low level of semantic knowledge,
the time taken to maintain small programs with a
higher level of complexity will not be significantly
greater than the time taken to maintain small
programs with a lower level of complexity.

Hypothesis 4:

The difference in time taken to maintain a program
under a low level of time pressure and the same
program under a high level of time pressure will be
significantly greater for subjects with a low level of
semantic knowledge when compared to subjects with
a high level of semantic knowledge.

Hypothesis 5:

The difference in time taken to maintain a program
with a low level of repair request detail and the same
program with a high level of repair request detail will
be significantly greater for subjects with a low level
of semantic knowledge when compared to subjects
with a high level of semantic knowledge.

RESEARCH PLAN AND EXPERIMENTATION

Experimental Environment and Methodology

This research is an empirical evaluation for the
hypotheses mentioned. Students from “C” and object-
oriented programming courses offered in the College
of Business Administration and Department of
Computer Science at the University of Houston
served as subjects. The experiment was designed to
study the effect of independent variables described in
the previous section and some of their interactions in
the maintenance effort. The experimental tasks
involve the maintenance of programs in the ‘C’
programming language.

Data in the experiment was collected using the
Program Maintenance Performance Testing System
(PROMPTS). For each program shown to the subject,
PROMPTS records the total of the time required to
read the program, complete the task successfully and
maintain the program. Once PROMPTS is invoked
the “Introduction Screen” follows the personal details
screen and explains how to perform the maintenance
tasks using PROMPTS. The subject can then choose
one of the three actions: (a) proceed to the task of
maintaining the program (b) suspend the experiment
for a few minutes or (c) suspend the experiment for
an indefinite period of time.

If the subject chooses to continue with the
experiment, PROMPTS displays a “program
window” containing a program that requires
maintenance. Programs that are designated as
challenge programs had a red border around it. When
the program has been correctly modified by replacing
all erroneous program lines with correct program
lines from the choice window, PROMPTS informs

The effect of semantic knowledge on software
Maintenance: an empirical study

Volume VIII, No. 2, 2007 282 Issues in Information Systems

the subject and invokes the introduction screen for
the next program. When the program is the last
program in the experiment, the termination screen is
invoked with a message thanking the subject for
participation in the experiment and providing the
contact address for the researcher. For each program
shown to the subject, the system records the time
required to read the program, read the task and
successfully maintain the program (i.e., choose the
correct replacement lines from the choice window). If
the subject is unable to maintain the program in a
reasonable amount of time (as determined by the
pilot study) the researcher can intervene and allow
the subject to proceed to the next maintenance task.
Subjects are also provided with two maintenance
tasks in order to train them with the operation of the
PROMPTs software.

Design and Experimental Procedure

The research design used in this experiment is a
variation of the multi-group posttest design with
multiple treatments. The treatments include (a)
variations in program size (b) variable name
mnemonicity (c) control flow complexity (d) level of
documentation (e) time pressure and (f) repair request
detail. The time taken to correctly maintain a
program is the dependent variable and serves as the
posttest measure. This kind of design provides a
certain degree of protection to the research when a
true experiment (random assignment of subjects to
treatment groups) inadvertently degenerates into a
quasi-experimental design when the randomization is
violated or contaminated by conditions in the
research environment not under the control of the
experimenter. The multi-group posttest design was
used to control for threats to internal validity and
various measures like not imposing a penalty for poor
performance was used to control for threats against
external validity.

DATA ANALYSIS AND RESULTS

Characteristics of the sample

The sample consists of 100 subjects. One group of
fifty subjects came from an introductory “C”
language course. The second group of fifty subjects
came mainly from various companies such as
Software Interfaces, RCG Information Technology
etc. and from a senior class in the Computer Science
program at the University of Houston.

The subjects were categorized into two groups, those
with low semantic knowledge and those with high
semantic knowledge. An instrument was used to
classify subjects. This was based on the
programmer’s programming experience, program
maintenance experience, knowledge of programming
structures, formal training in programming and
systems development and level of programming
experience. A composite score was computed for
each subject based on the factor weights and the
subject’s response to the 16 questions in the
instrument. A t-test conformed that these two groups
are significantly different with a p-value of .0001.

The 19-item questionnaire used in this study to
classify subjects into high or low semantic
knowledge groups had a reliability of 0.98 as
measured by Cronbach’s alpha. The hypotheses
suggested in the previous section were tested using
the Analysis of Variance (ANOVA) procedure. In
order for ANOVA to apply to a set of data, two
conditions must be fulfilled (1) scores must be
normally distributed in the population (2) the
variance in the treatment conditions or groups must
be homogeneous. Though in most cases violation of
these assumptions does not severely affect the
outcome of the ANOVA procedure, the assumptions
were nonetheless tested in an effort to reflect the
rigor of the analysis. Shapiro-Wilk’s test showed the
data to be normally distributed. ANOVA is robust to
deviations from the equality of variance assumption
provided all groups have the same number of
assumptions. In this research, the studentized
residuals were used to test for homogeneity in
variances between groups. Since the studentized
residuals were between –2 and +2 for almost all
observations, it can be inferred that the groups have
equal variance.

Results of the study

In this section, the results of ANOVAs are presented
for the hypotheses presented previously. Hypothesis
1 suggests there is a significant difference in time
taken to maintain a program depending on the
semantic knowledge of the programmer involved in
the maintenance. Results of the ANOVA conducted
to test this hypothesis are given in Table 2 and
indicate that programmers with a high level of
semantic knowledge take significantly less time to
maintain a program when compared to programmers
with a lower level of semantic knowledge.

The effect of semantic knowledge on software
Maintenance: an empirical study

Volume VIII, No. 2, 2007 283 Issues in Information Systems

Table 1(a): Descriptive Statistics for Hypothesis 1

Table 1(b): ANOVA/contrast results for Hypothesis 1

 n Mean time to maintain
(Seconds)

Programs maintained by low semantic group 400.00 287.27
Programs maintained by high semantic group 400.00 224.92

Support for this program suggests the use of
programmers with a high level of semantic
knowledge for software maintenance. Swanson and
Beath (1990) found that most organizations use
novices or less competent programmers for software
maintenance. They suggested that the use of low
quality programmers could be a reason for high
maintenance costs.

Hypothesis 2 predicts that changes in control flow
complexity will have less effect on time to maintain a
program when a program when these programs are
maintained by programmers with high semantic
knowledge when compared to the same programs
being maintained by programmers with low semantic
knowledge.

 Analysis of the data provides support for Hypothesis
2.

Table 2: ANOVA/contrast results for Hypothesis 2

It was found that the decrease in maintenance effort
due to the decrease in level of control flow
complexity was greater in programmers with low
semantic knowledge when compared to programmers
with high semantic knowledge. As shown in table 3,
this result has a calculated statistic of 11.90(p <
0.0001) and leads to the conclusion that the effect of
control flow complexity on maintenance effort is
stronger when programs are maintained by
programmers with lower level of semantic
knowledge. This suggests that programmers who
have gained experience by working with programs
with varied control flow structures should be
assigned to maintain complex programs while
novices could be used to maintain simpler programs.

A maintenance shop can therefore use a mix of both
expert and novices without reducing the overall
efficiency of the group.

According to hypothesis 3, programmers with lower
level of semantic knowledge will take the same time
to maintain complex programs they would take to
maintain a simple program. In this study, we found
that there is a significant difference in the time
required to maintain a small program with a high
level of control flow complexity when compared to a
program with a lower level of control flow
complexity. The ANOVA results for the Hypothesis
3 appear in Table 3.

Hypothesis n F-Statistic p-value
Hypothesis 1: μ(LOW SEMANTICS)-μ (HIGH SEMANTICS) > 0 800.00 27.01 .0002

Hypothesis n T-statistic p-value
Hypothesis 2:
(μ(prog11+prog12+prog31+prog32)-
μ(prog21+prog22+prog41+prog42)) low semantic >
(μ(prog11+prog12+prog31+prog32)-
μ(prog21+prog22+prog41+prog42)) high semantic

400.00 11.90 .0001

The effect of semantic knowledge on software
Maintenance: an empirical study

Volume VIII, No. 2, 2007 284 Issues in Information Systems

Table 3:ANOVA/contrast results for Hypothesis 3

Hypothesis n T-statistic p-value
Hypothesis 3: (μ(prog31+prog32)-μ(prog41+prog42) low
semantic knowledge = 0

100.00 224.40 .0001

Rejection of Hypothesis 3 suggests that maintenance
effort is sensitive to changes in control flow
complexity than expected. This hypothesis compares
the time taken to maintain two 16 line programs that
have control flow complexity measures of 1 and 4.5
respectively. The large magnitude in difference
(4.5:1) in control flow complexity may have lead to
the difference in time taken to maintain these
programs. It is possible that maintaining a program
with control flow complexity of 4.5 led to the
formation of more than seven chunks in the STM,
thereby leading to a significantly higher maintenance
effort when compared to maintaining a program with
control flow complexity of 1 which leads to the
formation of fewer than seven chunks. This was not
expected given the current practice of classifying all
programs with control flow complexity (McCabe’s
number) of 10 and above as complex programs.

Current results suggest that even small programs with
control flow complexity of 4.5 can lead to formation
of more than 7 chunks in the STM and thus should be
classified as a complex program.

Further research is required to study the relationship
between control flow complexity and the number of
chunks formed in the STM while maintaining small
programs. This may help classify programs into
simple and complex programs.

Hypothesis 4 asserts that for programmers with a
high level of semantic knowledge the difference in
time to maintain a program under low time pressure
and under high time pressure will be small compared
to programmers with a low level of semantic
knowledge. As shown in Table 4, the results support
hypothesis 4.

Table 4: ANOVA/contrast results for Hypothesis 4

This result suggests that the increased time pressure
reduces maintenance effort to a greater extent in
programmers with lower semantic knowledge. This
encourages managers to consider the use of time
pressure to reduce maintenance effort only when
maintained by novices.

Hypothesis 5 asserts that repair request detail will
have a significantly less effect on maintenance effort
for programmers with a high level of semantic

knowledge when compared to programmers with a
low level of semantic knowledge. The results of
Hypothesis 5 are presented in Table 5. It can be
concluded that repair request detail has a positive
effect on maintenance for programmers with lower
semantic knowledge. Support for Hypothesis 5,
encourages organizations to set standards for written
repair requests.

Table 5: ANOVA/contrast results for Hypothesis 5

Hypothesis n T-statistic p-value
Hypothesis 5:
(μ(prog92)-μ(prog91)) low semantic knowledge > (μ(prog92)-
μ(prog91)) high semantic knowledge

100.00 12.62 .0001

Hypothesis n T-statistic p-value
Hypothesis 4:
(μ(prog52+prog61)-μ(prog51+prog62) low semantic knowledge
> (μ(prog52+prog61)-μ(prog51+prog62) high semantic
knowledge

400.00 3.26 .0012

The effect of semantic knowledge on software
Maintenance: an empirical study

Volume VIII, No. 2, 2007 285 Issues in Information Systems

These standards should be based on the semantic
knowledge of the programmers in the software
maintenance group.

CONTRIBUTIONS OF THE RESEARCH

Contributions to MIS Research

The study makes several contributions to MIS
research. The study describes and experimentally
validates a theoretically based model to study factors
affecting software maintenance effort. It provides a
validated model of software maintenance and
organizes prior research using this model. It
illustrates the use of the model in generating
propositions concerning software maintenance
efforts. This, in turn, will help in building a
theoretical basis for software maintenance effort.
There has been little progress in software
maintenance for formulating a theoretical basis for
identifying and describing factors that affect software
maintenance effort (Ramanujan and Cooper, 1994).
This foundation can help in synthesizing empirical
findings and direct attention towards empirical
questions that merit investigation. For practitioners,
the study supports the use of programmers who have
gained experience by working with programs of
varied control structures. Greater detail of repair
requests also helps maintenance effort.

Limitations of the Study

First, the investigations in this research are limited to
laboratory experimentation thereby limiting its
external validity. Second, although a concerted effort
was made to secure a representative sample, certain
groups (especially college students from the ‘C’
programming class offered in the College of Business
Administration at the University of Houston) tended
to be disproportionately represented in the sample
due to practical considerations. Any claim of external
validity must be tempered with the fact that the
sample, strictly speaking, was not randomly selected
from the target population. The next limitation was,
is the limited manipulation of the independent
variables. All independent variables in this study are
classified dichotomously as either high or low. Such
dichotomous measurement allows only for relative
analysis and limits the results of the study to real-
world situations. Finally, the size of the tasks was
dictated by the limited availability of the subjects for
the experiments. Tasks were designed so that all
subjects were able to complete them in a reasonable
amount of time (i.e., two hours).

CONCLUSIONS AND SUGGESTIONS FOR
FUTURE RESEARCH

This research shows that software maintenance
requires programmers with high level of semantic
knowledge, including conditions where significant
complexity is involved. Moreover time pressure will
work better for programmers with low level of
software maintenance. Future research can take three
forms. First, the application of the HIP model to
software maintenance effort can be used for
generating additional propositions that focus on the
reduction of maintenance costs. Secondly, the SME
model can be enriched by incorporating, in the HIP
model, the results of future studies on long-term
memory, short-term memory, buffer and sensory
registers. Finally, further research can validate the
propositions through field experiments. Studies of
this nature will enhance the external validity of the
results of this research. This study can be described
as a precursor to a program of research in the area of
software maintenance effort.

REFERENCES

1. Alain, A. et. al., (2002), Field Studies Using

Functional Size Measurement in Building
Estimation Models for Software Maintenance.
Journal of Software Maintenance and Evolution:
Research and Practice, 14(1), 31-64.

2. Boehm-Davis, D.A., et. al. (1992). The Role of
Program Structure on Software Maintenance,
International Journal of Man-Machine Studies,
36(1), 21-63.

3. Joergensen, M., (2004). A Review of Studies on

Expert Estimation of Software Development
Effort. Journal of Systems and Software, 70(2).
37-60.

4. Joergensen, M., and Sjoeberg, D.I.K.

(2002),“Impact of Experience on Software
maintenance Skills”, Journal of Software
maintenance and Evolution, Research and
Practice, 14(2), 123-146.

5. Ko, A.J., et. al (2006), An Exploratory Study of

How Developers Seek, Relate, and Collect
Relevant Information During Software
maintenance Tasks, IEEE Transactions on
Software Engineering. 32(12), 971-987.

6. Rainer, K. (2003), Software Visualization in

Software Maintenance, Reverse Engineering and
Re-Engineering: A Research Survey”, Journal of

The effect of semantic knowledge on software
Maintenance: an empirical study

Volume VIII, No. 2, 2007 286 Issues in Information Systems

Software Maintenance and Evolution: Research
and Practice, 15(2), 87-109.

7. Ramanujan, S. and Cooper, R.B. (1994). An
Human Information Processing Perspective on
Software Maintenance. Omega. 22(2), 185-203.

8. Robillard, M.P. et. al. (2004), How Effective
Developers Investigate Source Code : An

Exploratory Study, IEEE Transactions on
Software Engineering. 30(12). 889-903.

9. Vessey, I., and Weber. R. (1984), Conditional
Statements and Program Coding: An
Experimental Evaluation. International Journal
of Man-Machine Studies. 21(2). 161-190.

10. Wickelgren, W. (1974) How to Solve Problems.
W.H. Freeman, San Francisco.

