
Volume VIII, No. 2, 2007 529 Issues in Information Systems

CREATING PLUGGABLE DOMAIN-PLATFORMS
FOR GOVERNMENTAL SYSTEMS

George Sargent, University of Wisconsin-Whitewater, sargentg@uww.edu
David Munro, University of Wisconsin-Whitewater, munrod@uww.edu

ABSTRACT

Governmental entities, by their nature, repeat
geographically across the nation and around the
world. As such, they have duplications of needs and
of course this leads to “reinventing of the wheel”.
Given the available technologies available today,
much of this duplication can be eliminated using the
“open source” software paradigm for the
construction of information systems. The goals of this
paradigm shift are to (1) make the creation of
governmental computer systems more efficient by
reducing duplications, (2) spread the expense, (3)
create better systems and (4) make the systems
available to other government agencies.

Keywords: pluggable, open source, collaborative
technologies, paradigm, international IS, government

INTRODUCTION

We are in a time of increasing needs for government
information systems as too many of these systems are
seriously flawed, or completely unusable. Just
considering our own state, Wisconsin, the Milwaukee
State Journal newspaper recently reported the state
has recently scrapped two computer information
systems projects after having spent $36 million and
in recent years the total exceeds $100 million. [4].

A common governmental problem is paralysis by
analysis. In an attempt to comprehensively address
an issue they develop large, long-range plans. Such
multi-year, software projects seldom succeed. For
example, Wisconsin’s Department of Health and
Family Services has a web page for “County – State
IT Collaboration”.[10] On it you will find that in late
January of 1997 the first deliverable was “a standard
set of terms and definitions which describe the
processes of our human service delivery system.”
Nearly seven years later, the agenda for a December
19, 2003 is for a “Planning meeting to discuss and
agree upon a go-forward plan/project for achieving
an integrated health and human services technology
architecture.” Seven years and still just talking!

Contrast this with SAHANA an open source project
that was first conceived of during the December 2004
Asian Tsunami. SAHANA developed a system to aid
Sri Lanka after the Tsunami. In 2005 the system was
deployed in Pakistan to provide support after a severe
earthquake. It was then deployed four more times in
2006 by various governments and NGOs.
http://www.sahana.lk/ The approach taken from the
onset was to provide an integrated set of pluggable,
web based disaster management applications.

The handwriting is on the wall about the open source
model and pluggable systems. This paper argues that
putting these two together will yield much more
successful systems at reduced costs.

OPEN SOURCE AND PLUGGABLE SYSTEMS
IN GOVERNMENT AGENCIES

Open source systems have shown
unquestionably good results. Eric
Raymond in his Book “The
Cathedral and the Bazaar” stated,
“Who would have thought that a
world class operating system could coalesce, … out
of part-time hacking by several thousand developers
scattered all over the planet”, Raymond [8]. “Eric
Raymond’s persuasive manifesto defining the open
source revolution has helped propel this collaborative
approach to software development into the
mainstream.” [6] The Open source software
development model is no less than a new software
development paradigm.

The open source model, being collaborative in nature,
is much better if used to do fewer projects shared by
many people. Fortunately, this does fit the realities of
governmental systems. There can be little argument
that peer governmental agencies at all levels have
overlapping problem domains whether we’re talking
about nations, states, regional or functional
authorities. These overlaps foster “recreating the
wheel” behaviors. Why not collaborate to design a
single solution for a business domain that can be
configured to meet multiple agencies’ needs?

https://doi.org/10.48009/2_iis_2007_529-533

Creating pluggable domain-platforms for governmental systems

Volume VIII, No. 2, 2007 530 Issues in Information Systems

Fortunately, we also now have “pluggable”
architectures for building systems that can be adapted
by their users to meet their idiosyncratic needs. These
adaptations can be made without rewriting the code
base, or resorting to least-common-denominator
solutions. In the past, rewriting parts of a system to
adapt it to local needs stifled progress because any
new release required rewriting the enhancements all
over again. However, this is no longer true. We now
can create new functionality and “plug” it into the
standard system without changing the existing code
base. When the standard system is enhanced, we plug
our changes into the new release with minimal work.

Therefore, this paper argues that governments can
greatly benefit from adopting these two advances in
combination. That is, adopt the open source approach
to building systems and then designing their systems
so other developers can “plug-in” locally customized
components to meet local needs.

BENEFITS

The first benefit of moving to the open source
paradigm is increased participation and
accountability. Many people can contribute –
including people not on the project! The normal
mechanism of becoming a “committer” to an open
source project is to begin correcting bugs on their bug
list. Such increased participation uncovers all sorts of
software shortcomings. According to Raymond [7]
“all bugs are shallow to someone.” Many sets of eyes
on the source code will discover not only bugs, but
shortcomings early when they are least costly to
repair.

Wouldn’t states like to avoid headlines like “State
Scraps computer project?” Apparently Raymond
makes a compelling case for use of open source
methodologies as he is often cited by people extolling
its virtues, Whitlock [9], Porterfield [5].

A second benefit is to spread the costs and
opportunities. If two agencies jointly developed a
system, and were able to foster an open source
community, they might get significant contributions
from outsiders as do other open source projects. We
might even tap into a sizable citizen group willing
and capable to freely work on behalf of the
government as they now already do for other open
source projects! All of this extra help should reduce
costs to each involved agency. Any subsequent
agency that decided to consume an existing solution
would save even more. When enough solutions were
available, most every agency could also become
consumers as well as producers.

Thus far, we’ve tried to make the case for the
efficacy of the open source paradigm in general and
the need for government entities to band together to
use open source to reduce waste and cost. There is
another important enabling technology.

Computer science has given us rich tooling and
application frameworks. Of particular interest here
are “pluggable” designs. The Eclipse editor is one
notable example of a pluggable design. Tooling
vendors regularly extend Eclipse by creating plug-ins
to give it new functionality. (There are now over 800
plugins.) [2] Eclipse users then can install these
without Eclipse even knowing of their existence and
they work!

We want to capitalize on this pluggable design
concept in a two step process. Create a pluggable
skeleton of an application for a given business
domain, then create multiple, e.g. two, pluggable
applications based on the skeleton at two or more
sites. The mechanism of ensuring the skeleton
applications meet the needs of multiple agencies is to
do it open source. Multi-year requirement gathering
would be even more obviously unnecessary.

We might ask, is this concept realistic? How would
we begin?

CONCEPTUALLY – HOW

The first step of creating a pluggable, domain
skeleton is to use collaboration tools used by the open
source communities such as Apache.org and
Tigris.org. At minimum, these tools include web
sites, discussion boards, to do lists, version control,
bug tracking and a framework to support continuous
builds, e.g. CruiseControl[3].

They also need to agree on their development
platform. Let’s assume they have agreed to build
Web applications based on Java, a particular Java
persistence model, JavaServer Faces and JavaServer
Facelets (https://facelets.dev.java.net/), all selected
for their pluggable capabilities.

By simultaneously developing a system for multiple
agencies, each agency’s design needs will get
incorporated into the design early on. In the simplest
case, this system is going to consist of two kinds of
components which form the domain platform:

Creating pluggable domain-platforms for governmental systems

Volume VIII, No. 2, 2007 531 Issues in Information Systems

• A pluggable and therefore, reusable skeleton
[1]

• Pluggable, fleshed-out framework
applications built on the skeleton

Let’s use the example to illustrate the difference
between the skeleton and the fleshed-out framework.
Suppose many states needed a new hunting/fishing
license system and the project was begun
collaboratively by several states and a Canadian
providence as an open source project using the
pluggable architecture concepts.

Our system would clearly maintain information about
the hunter and the license assigned to the hunter. We
could build a skeleton based on the process of taking
input data about the hunter, validating it, and
updating the data store to perform the usual CRUD
(Create, Read, Update and Delete) on the hunter
table. Every framework application will need this
capability. The skeleton will perform these functions
with no concept of any of the data elements contained
in the hunter ‘object’. It will only know to transmit,
call a place-holder validator, store/retrieve and return
the hunter object. Likewise the license will need
similar functionality. The skeleton would be used
unchanged from site to site.

Clearly implementation details will vary radically
from site to site. Handling these is the job of the
framework application. There will be multiple such
framework applications because of site-specific
needs.

These framework applications, unlike typical
applications, would be designed to extend at logical
extension points (discussed below) so that local
customizations would not clash with future releases
of the original code base. That way if a new release
of the code base were made, the local interface
implementation would not be affected so long as the
method calls in the interface did not change. They
would plug into the new release just like they
plugged into the original release.

In the open source tradition, both parts of the
application would be freely available to all.

We have the technological base to design
applications that are robust at the user interface (UI)
layer, business logic layer, and database layer so
local needs can be met by extending the application
with plug-ins without the fear that the next release is
going to be a nightmare to install.

Just think as more states used our hunting/fishing
license system, more people would discover and fix
its shortcomings and, in turn, make the improvements
available to all. This is a win-win proposition.

SPECIFIC PROBLEMS

Continuing with the example of developing a hunting
and fishing registration system to support needs in
Canada and the USA, assume two cross-border
agencies are cooperating and they are using our
suggested methodologies. Although they agree on the
platform, they immediately determine they differ in
fundamental ways:

• Language: English and French
• Measurement units: Imperial and Metric
• Monetary: Canadian and US dollars

After a little more discovery they determine that they
also differ on:

• Desired look and feel of the application
• Database management products used:

Oracle, MS SQLServer and DB2 (all three
are used)

• Database structures, e.g. table names, fields.
One site has more tables than the other.

• Custom validation needs
• Content needed by one, but not the other.
• Whole sub sections of unique content

needed by one site, but not the other.

The above list of differences may seem daunting, but
we now have technical solutions to all of them so that
a user could make changes to support local needs and
new releases of the software would not invalidate the
local changes. Look at them one, by one.

Language: English and French. Java supports
resource bundles. This allows the user interface (UI)
developer to place a key value representing a place-
holder for text on a display, and at run-time the actual
text is retrieved from a file, i.e. resource bundle.
Consequently, support for the new language is
largely handled by making a parallel file in the new
language.

Measurement units: Imperial and Metric. Java
supports the Internationalization standard, I18N and
localization, L10N. These reconfigure measurement
units, decimal points, error messages and so forth to
the selected language as configured. (Clearly, it could
also convert units of length or volume without
difficulty if that were a requirement.)

Creating pluggable domain-platforms for governmental systems

Volume VIII, No. 2, 2007 532 Issues in Information Systems

Monetary: Canadian and US dollars. The
application can take care of details involving
conversion, e.g. between US dollars Canadian dollars
in our example, if any conversion is even necessary.

Desired look and feel. Style sheets are great for
defining new looks including the location of the
various components on the display, e.g. locate on
right side, or top. Furthermore, Java Swing allows
various looks & feels to be chosen for each
application.

Database management product used. Here we are
getting into more serious changes. However, the Java
persistence layer will work with any database, e.g.
Oracle or DB2. Any customization can be carefully
separated from the domain platform such that it is not
accidentally lost on subsequent updates of the domain
platform.

Database structures. Here the problem is that
everyone’s databases already exists and are different
so the application has to be fitted to each database.

The application can use the concept of “convention
over configuration”, popularized by Ruby on Rails, to
minimize the configuration tasks. This concept has
caught on like wild fire and should simplify database
adapters. However, it will not solve all the data
differences problems. Local applications will need
further adaptations. However, local data handling
needs could be isolated in the application’s data layer
to protect them from future releases of the platform.

In the end, each locally customized application will
need to write some of its own SQL to perform CRUD
operations on its own data structures.

Custom validation needs. The validation process is
always the same, but the implementation details vary.
The process always takes a value, or set of values in,
evaluates it/them and returns true/false to its
container which branches according to rules
implemented in a configuration file. Template files
can provide things like maximum and minimum
values and where to branch given the result.

But validation requirements may vary much more
radically. Suppose one local implementation may
want to examine driving records for violations before

issuing a hunting license. That requirement is not
shared by the other sites. Nevertheless, the extension
point will be provided in the platform to do it. One
such mechanism is the “dependency injection”. See
http://en.wikipedia.org/wiki/Dependency_injection.
This will give each local implementation the power
to have extensive, customizable business logic
validation to meet site specific requirements without
changing the code base.

Likewise, an error message area will be provided so
each validation could provide custom feedback.

Content needed by only one site. Assuming these
content differences are minor, one site will add new
fields to the presentation to placing them in a separate
file and “including” it in the original page. This way
the modified content is not mingled with the
framework application and updates are not impeded
greatly. Each field specifies its own validator, so the
server-side validation may be also specified unique to
the newly added field. But alterations may not be so
simple.

Whole sub sections of unique content. Perhaps this
is the site that wants to examine the driving record
before issuing the license. Assuming the presentation
is built with JavaServer Facelets, the page is divided
into sections or facelets, e.g. top, bottom, left, right,
center, etc. Here the site needing radical changed
would create a new facelet and either replace some
other facelet or add it to the existing presentation.
That’s the beauty of facelets. The applicant’s drivers
record may be pulled up onto a facelet to give the site
a custom capability.

CONCLUSION

We have shown that the Information Technology
industry has given us tools that may be used by
governmental agencies to radically alter the process
of developing software to achieve better results.
These tools are mostly available free and are
consistent with the needs of governmental agencies.
We think that if used properly, governments could
radically alter the way software is developed for the
betterment of all citizens.

Information Technology Ethics: A Research Framework

Volume VIII, No. 2, 2007 533 Issues in Information Systems

REFERENCES
1. A Pluggable architecture, e.g. Java Plug-in

Framework: JPF http://jpf.sourceforge.net/)
2. Count of available plugins for Eclipse,

http://www.eclipseplugincentral.com/.
3. CruiseControl,

http://cruisecontrol.sourceforge.net/
4. JSOnline, Milwaukee Journal Sentinel, State

scraps computer project, Feb 17, 2007
5. Porterfield, Keith W, “Information Wants to be

Valuable”, O’Reilly Perl Conference
6. Raymond, Eric S, (2000), The Cathedral and the

Bazaar,
http://www.catb.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar/index.html#catbmain

7. Raymond, Eric S, (2000), Release Early, Release
Often, Principle 8

8. Raymond, Eric S. (2001), The Cathedral and the
Bazaar, back cover, O’Reilly, 0-596-00108-8

9. Whitlock, Natalie, (2001) The security
implications of open source software, IBM
Developerworks, [online] http://www-
128.ibm.com/developerworks/linux/library/l-
oss.html

10. Wisconsin Dept. Health and Family Services
page
http://dhfs.wisconsin.gov/aboutdhfs/ITcollaborat
ion/

