
Volume X, No. 2, 2009 128 Issues in Information Systems

Selecting a first programming Language to Teach Prospective Teachers – Case

Examples from Two Programs

Azad Ali, Indiana University of Pennsylvania, azad.ali@iup.edu

Frederick Kohun, Robert Morris University, Kohun@rmu.edu

David Wood, Robert Morris University, Wood@rmu.edu

ABSTRACT

The purpose of this paper is to identify the

factors that influence the decision to select a

programming language to teach students

enrolled in a graduate level course in education.

The paper illustrates the experience of two

degree programs: First, the master degree of

business education (M.Ed.) at Eberly College of

Business and Information Technology – Indiana

University of Pennsylvania (IUP), and second,

the master of education (M.S. Business

Education) at Robert Morris University (RMU).

The paper first reviews literature regarding

factors that make learning to program a difficult

task. It then introduces a programming language

named Alice and discusses how this language is

able to address the difficulty with learning to

program. It then illustrates the experience of

both programs at IUP and RMU in selecting a

programming language to teach for their

students enrolled in their respective education

master degree programs.

Keywords: Introduction to Programming,

Programming for teachers, Programming for

high schools, Programming for prospective

teachers, Beginner programming language

INTRODUCTION

Academic technology programs often struggle

with the selection of a programming language

for entry level programming courses. An entry

level programming course can serve as a

launching pad for other more advanced

programming courses. It sets the stage to learn

more advanced programming topics. At the same

time, a beginning programming course can also

be taken by students from other non-technology

majors. While the non-major students may not

have the same interest in preparing to learn

advanced programming topics, it must be taken

into consideration that many students may have

dissimilar backgrounds with respect to students

enrolled in technology programs.

One of the first steps that are usually taken when

deciding on the contents for a beginner

programming course is the selection of a

programming language used to teach the course.

Programming languages vary from one program

to another. Their purpose of introduction to

courses may be different also. Teachers may

choose from beginner programming languages

(such as Alice and Scratch) to fit the entry level

student need. The same teachers may also select

from general purpose programming languages

(such as Java, C++ and Visual Basic) to fit a

wider range of applications. Consideration for a

diverse population of students enrolled in the

course as well as student perception of course

difficulty must be included in the decision

process for selecting the programming language

for an entry level programming course.

This paper illustrates the experience of two

programs in selecting a programming language

to teach master degree students in a first

programming course. The M.Ed. program at IUP

and the M.S. Business Education program at

RMU both teach programming topic/course for

their students enrolled in their respective

education master degree programs. The paper

begins by explaining the factors that make

learning to program a difficult task. It then

introduces a programming language named Alice

and shows how this programming language

addresses identified difficulty factors. It then

introduces other factors that usually influence the

decision to selecting the programming language.

The paper then elaborates on the experience of

the two programs at IUP and RMU and how they

addressed these factors when selecting a

programming language for their students

https://doi.org/10.48009/2_iis_2009_128-137

mailto:azad.ali@iup.edu
mailto:Kohun@rmu.edu
mailto:Wood@rmu.edu

Selecting a first programming Language to Teach Prospective Teachers

Volume X, No. 2, 2009 129 Issues in Information Systems

enrolled in their graduate programs. A summary

of the paper is presented at the end.

Difficulty Reasons for Learning to Program

Learning to program is considered to be a

difficult task to many students. It is estimated

that at least 25% to 80% of students drop their

first computer course due to the difficulty in

learning to program [4]. This difficulty is

experienced by students enrolled in technology

who are required to take programming courses as

well as other students who take programming

courses as part of their requirements to complete

their degree [3].

Other studies have analyzed the factors that

contribute to the difficulty of learning to program

and suggested remedies to these difficulties.

Dann, Cooper and Pausch [4] for example listed

four factors that contribute to the difficulty

associated with learning and programming:

Fragile mechanics of program creation,

particularly syntax; the inability to see the result

of computation as the program runs, the lack of

motivation for programming and the difficulty of

understanding compound logic and learning

design techniques.

In a study conducted to suggest steps to simplify

learning to program, Kelleher and Pausch [8]

compared a number of programming languages

that are commonly used in beginner

programming courses. The same study wrote the

following about the difficulty of learning to

program:

Learning to program can be very

difficult for beginners of all ages. In

addition to the challenges of learning to

form structured solutions to problems

and understanding how programs are

executed, beginning programmers also

have to learn a rigid syntax and rigid

commands that may have seemingly

and arbitrary or perhaps confusing

names. Tackling all of these challenges

simultaneously can be overwhelming

and often discouraging for beginning

programmers (p. 83).

The studies listed above point to a common fact:

learning to program for a beginner is considered

to be a difficult task. However, the factors that

contribute to these difficulties are not totally

agreed upon. Thus, further explanations of these

factors may shed some lights on the specific

reasons for the difficulty. The remainder of this

section explains in more detail some of the

reasons that contribute to the difficulty in

learning to program.

Fragile Mechanics and Syntax

The mechanics of developing a program are not

standardized. It is called fragile because there is

no direct and pre-defined way to develop a

program. Although program creation usually

starts by learning the syntax, some argue that

tackling the syntax is not the best way to learn to

program. Learning syntax is foreign to some

students and, as a result, they may spend a lot of

time learning the programming language syntax

without context.

Syntax is ―the grammatical role of the

programming language‖ or so explained in

typical programming courses. However, a closer

look at the rules of syntax in programming

languages reveals many differences from the

grammatical rules of typical natural language.

These differences have to do with the structure

of commands, the stopping character, naming of

variables, passing of parameters and other related

issues when structuring lines in programs.

The error messages that are generated by the

compiler are not always helpful. Sometime, these

error messages are designed for advanced

programmers and the wording of the messages

do not help beginning programmers understand

their meaning. Other times, the error messages

may point to a particular line of code while the

actual error is at a previous or a totally different

location within the program. In these cases, the

beginning programmers keep looking at the line

where the error message appears and can’t

identify the actual error. Locating and correcting

syntax errors may then, as a result, end up being

a long and daunting task. For beginners who are

not familiar with programming, spending such a

long time on fixing simple syntactical errors can

become frustrating

Compound Logic and Structure

Teaching program design and structure is not

new in academia. Structure has been used in

different fields of study and provides advantages

when used in a particular field. In computer

programming, the term ―structure‖ is repeated

often and is practiced differently when writing

Selecting a first programming Language to Teach Prospective Teachers

Volume X, No. 2, 2009 130 Issues in Information Systems

programs. Actually, the word structure is

considered the foundation in three different

flows of code when writing different programs.

These three different procedures for controlling

the flow of code are termed the three control

structures: sequence control structure, selection

control structure and iteration control structure.

The level of ―structure‖ is practiced differently in

each of the three ―control structures‖ and, as a

result, the associated difficulty in understanding

them may vary also.

The reference to structure in programming is

more than just the three control structures: it

references the design of a program that breaks

down the logic into meaningful and manageable

modules. The difficulty and complexity arises as

the number of modules and the links and

connections between the different modules

increases.

This call for structure is designed to make a

program development cycle more efficient and is

aimed at standardizing the coding of programs

and reusing existing code of the programs.

However, this kind of structure is unfamiliar to

inexperienced programmers. Later developments

in the programming industry introduced the use

of Object Oriented Programming (OOP)

methodology which stresses revising the issue of

structure in program development. The OOP

methodology introduced many new concepts that

needed to be understood along with its

associated programming concepts. Dann, Copper

and Pausch [4] noted that today’s beginning

programmers have to learn the original concepts

of programming such as loop, selection, and

iteration along with the new concepts of OOP

such as classes, objects, encapsulation,

inheritance, and others. Thus, it adds additional

steps to learn which, as a result, adds to the

difficulty of learning to program.

Seeing Program Results

In order to see the result of execution from any

program, the program more often needs to be

error free, to execute, and then, display the

output. However, making any program run is not

always a simple process. After working through

the syntax and making the program start to run,

the programmer then faces additional errors that

are called ―execution errors‖. These errors may

result from missing variable name or using

different field types (numeric or otherwise) for

the wrong purpose (such as using non-numeric

fields for computations or dividing by zero).

After working through all these steps, the

programmer still may not be able to see the final

program output.

The steps listed above did not include working

through what is termed ―logical errors‖. These

are the errors that result from incorrect program

logic. These errors are often harder to locate and

correct and may require a deeper understanding

of the application problem as well as more

programming knowledge before being able to

correct them. In this case, similar to syntax error

messages, the logical and execution error

messages that are generated from the compiler

are not very helpful to beginning programmer.

As a result, programmers have to sift through

their lines of code in order to find what caused

the execution or logical error.

The main difficulty with these sequence of steps

is that most often the programmer is unable to

see the result of the program until going through

all the errors (syntax, execution and logical

errors). In some cases, there are no visual clues

or intermediate steps to show a preliminary

output. Often, the programmer has to repeat

many steps that take a long time before seeing a

result of the program.

Lack of Motivation

The programming profession is seen by many

people as a boring job (Rosamita, 2007). This

point of view stems from the notion that

programmers sit in front of a computer spending

long hours trying to produce output or correct

errors that seem to be of minimal importance.

Thus, motivation is minimal to take different

programming courses that have the potential to

become qualified to take on what it seems to be a

boring job.

A common first program that is used during an

entry level programming courses displays a

message that prints ―Hello World‖ to the

audience. Additional typical ―first‖ programming

assignment examples may include writing a

program to convert Fahrenheit to Centigrade or

converting miles driven to kilometers.

Writing the programs to produce the examples

mentioned above may follow different steps

when using one programming language versus

another. However, it is safe to say that producing

small outputs like the ones described above take

Selecting a first programming Language to Teach Prospective Teachers

Volume X, No. 2, 2009 131 Issues in Information Systems

a number of steps and a certain amount of time.

To beginning students who are taking a first

programming course, putting this kind of effort

to produce a simple output may not be justified

and may not be time efficient.

Students may question the feasibility of spending

this much time to produce simple outputs that are

generated from writing programs. Added to all of

that, the process of finding and correcting logical

errors requires a certain level of understanding of

the logic and structure of the program. As a

result, students often may be less motivated to

get enrolled in programming courses that

potentially get them in what it seems to be

―boring‖ jobs.

Alice Programming Language

This section explains about the use of a new

language in introductory programming course. It

begins by providing a brief explanation of Alice

programming language and details how this

language addresses difficulty factors for learning

to program that were identified earlier in this

paper. The paper then explains the factors that

make Alice as a good candidate for the language

to teach prospective teachers in introductory

programming courses.

Alice is a programming language that was

introduced by Carnegie Mellon University and it

seems that it has provided the answers to the

questions that were raised about the difficulty of

programming languages. Alice provides a visual

interface that makes it easier to follow, and it

cuts down on the syntax and coding.

Alice has increased in popularity for use in first

year programming courses at both colleges and

high schools. The increasing popularity of Alice

as a first programming language is due to the

many advantages that it provides over traditional

or general purpose programming languages.

Adams [1] noted thee advantages to using Alice

in introductory programming courses:

The allure of 3D graphics. It is difficult

to overstate the visual appeal of 3D

animations, especially to today’s

visually-oriented students. When you

program works, you feel euphoric! But

even when you make a mistake (a logic

error), the results are often comical,

producing laughter instead of

frustration.

The Alice IDE. Alice includes a drag-

and—drop integrated development

environment (IDE) that eliminates

syntax errors. The IDE eliminates all of

the missing semicolons, curly braces,

quotation marks, misspelled keywords

or identifiers, and other syntax

problems that bedevil CS1 students.

The design of Alice aims at addressing the points

of difficulty that is often faced by students taking

a first programming course as explained in the

remainder of this section.

Alice Syntax and Mechanism

When developing a program in Alice, users do

not have to type the program. Instead, users pull

down objects and align them according with

specified commands that are already drawn for

the user [11]. As the user pulls a particular

object, another dropdown menu appears that

gives the user options to choose from. The key

here is that there is no room to make syntax

errors when using Alice. Instead, efforts can be

directed to understand the mechanism and the

concepts of the program [10].

The mechanism of program development is more

direct in Alice than in other programming

languages. Program development in Alice begins

by creating what is termed as ―world‖ which is

the stage for placing objects that work together

to produce an intended output. All the objects are

placed in a defined and visually apparent library,

thus making it is easier to look them over and

make them work. So the point that can be made

here is: there are no syntax errors in Alice. As a

result, students do not get frustrated looking over

and over their code to find syntax errors. The

other point that can be made here is that due to

the ―visual‖ nature of Alice program, the

mechanism of developing a program is more

visible and direct that other languages.

The Structure in Alice

Alice uses the structure of object oriented

programming [9]. In Alice, classes are selected

to select from and then objects from the classes

are pulled to a ―world‖. As each object is drawn

on the world, a visible list of properties and

methods can be observed and pulled so to use

them in the program.

Selecting a first programming Language to Teach Prospective Teachers

Volume X, No. 2, 2009 132 Issues in Information Systems

Classes are pulled from a class library. This class

library contains a large collection of visual

objects that are easily recognized and noticed.

Once an object from a class is drawn in the

editor area, the objects can be seen as having

properties, methods and functions. These terms

can be easier understood because they refer to

characteristics of visual objects such as height,

width, moving in one direction, distance and

other similar characteristics.

Similar to other programming languages, Alice

uses functions, methods, events and others. It

passes parameters, receives output, and creates a

structure to the program. All of this is done very

similarly to most other programming languages

except that Alice uses visual objects which are

easier seen and understood [7].

As methods and functions are created in Alice,

visual buttons are added to the program that

easily identifies them. Reusability of the pre-

written modules is a simple drag and drop from

one location to another. The content of the

module (whether properties, methods or others)

are pulled with the module when dropping it to a

different location. In other words, Alice enforces

the use of OOP through visual, easily identifiable

structures that have distinct characteristics and

could be used along different programs to

enforce the re-usability concept.

Seeing Programming Results

Programming in Alice enables individuals to see

the programming code right after the program

ends. As the objects are pulled off the visual

library, the programmer is able to see results

immediately. There are no syntax errors in Alice,

thus programmers do not have to stumble

through lines of syntax errors. As a result,

programmers using Alice are able to see program

result as soon as they finish or complete the

program.

The issue of execution and logical errors are

handled more easily in Alice than in other

programming languages. The design of the

program reduces the possibility of execution

error. By using visual objects that can be easily

identified along with their visual properties and

methods, interim results of the program can be

easily observed. Hence, some of the execution

and logical errors can be identified and corrected

during design time rather than wait until program

completion when the program is longer and

locating the error becomes less obvious.

The Issue of Motivation

Lack of motivation in learning to program comes

from the notion that learning to program is

boring and the time it takes to develop a simple

output is considerably long. In other words, the

time/output ratio is high enough to cause some to

think that learning to program is not worth the

time invested.

Alice uses visual output. All objects within Alice

are three dimensional visual objects. The output

that is usually generated from a typical Alice

program, as a result, is more visually appealing.

The objects represent popular metaphors which

tell stories, draw shapes, and have moving

components. These movements on the screen

provide an interesting application to the

programmer.

Development time for Alice programs is minimal

compared to general purpose programming

languages. Additionally, Alice engages the

programmer during development times as well as

during the testing phase. By using metaphors that

are popular in society, the program will not be

limited to displaying simple text output. Instead,

the program generates objects that are jumping,

talking, and changing color or similar techniques

that are used in game development. In other

words, working with Alice helps fade the notion

that programming is ―boring‖ while also it

enhances motivation. The students behavior

changes because they are able to create programs

in less time that produce more interesting output.

Alice and Prospective Teachers

From the earlier discussion, it seems obvious that

Alice is a programming language that fits the

environment for teaching entry level

programming courses. Alice also can be

considered a language to be used for students

enrolled in education programs for prospective

teachers.

Prospective teachers are more likely to apply the

knowledge they have gained from their formal

education into their own classrooms. As so,

students who graduate from education programs

(or business education) develop a prospective on

what they teach based on what they learned in

their prior education. Therefore, it can be argued,

Selecting a first programming Language to Teach Prospective Teachers

Volume X, No. 2, 2009 133 Issues in Information Systems

Alice is an ideal language to teach prospective

teachers because if they can understand it and

apply it, they can carry it with them and teach it

to their future students.

Using Alice in a first programming course may

be able to solve many of the problems associated

with teaching programming for high school

students for the following reasons:

- Alice dispels the common notion that

pervades high schools: learning to program

is considered to be asocial [12]. Such a

notion discourages most students in general

(high school students in particular) from

getting enrolled in computer programs.

- Using Alice, programming teachers can

incorporate toys, games and other

activities [1] that high school students

want to have in their class more than

other students.

- The Alice application is more likely to

have characteristics that interest high

school students more often than others;
it uses characters that most high school

students relate to [6].

Other Institutional Considerations

Selecting a programming language that

simplifies the learning of students could help

attracting more students into these courses.

However, this is not the only factor that decides

on which programming language to select in

beginner programming courses. Instead, different

other factors influence the selection of such

programming language in entry level courses.

This section discusses other considerations that

may need to be taken into account when

contemplating choosing a programming

language for entry level programming courses.

General Purpose versus Beginner

Programming Courses

One of the main issues that educators in

introductory programming courses deal with is

whether to select a programming language from

the general purpose programming group or from

the beginner level programming group. General

purpose programming courses are those that

have been used in the industry for a while such

as Java, C++, Visual Basic and others. Beginner

programming languages are the languages that

are designed to simplify the learning of

programming. They usually include tools and

objects that make learning to program simpler.

An example of this is the Alice programming

language and Scratch.

Selecting a general programming course opens

the door to wider range of applications and also

opens the link to simplify learning other similar

general purpose programming languages.

However, a beginner programming language has

a distinct advantage in that is it is designed for

beginners, thus it simplifies learning

requirements for students.

Major Only versus Service Courses

A beginner programming course may be taken

by students with technology majors only, often

designated a ―major only‖ course. However, at

the same time, the same course may be required

for students from other departments and be

referred to as a ―service‖ course.

In the first case, having all the students in the

course as technology majors provides the

opportunity to teach advanced topics. In this

case, general purpose programming languages

are appropriate because they are known to be

able to interface with other applications such as

database, spreadsheets and operating system

utilities—thereby opening the door to teach

advanced topics.

However, if the course is a service course, the

teacher may take into consideration ways to

simplify the course. Non-technology major

students may not have the same interest in

learning advanced topics and interfacing with

other applications as students from technology

majors. In the case of a programming language

as a service course, considerations for

simplifying the learning of programming may

take precedence, and therefore requiring the need

for the selection of one of the beginner

programming languages.

Entire Course versus Selected Topics

Programming courses often dedicate an entire

course to teach one specific programming

language. Other courses teach programming as a

selected topic among different other topics

within that course. Each of these cases affects the

selection of programming language. If

programming is taught as one of other topics in

the course, less depth is allocated for the topic

Selecting a first programming Language to Teach Prospective Teachers

Volume X, No. 2, 2009 134 Issues in Information Systems

and, as a result, a beginner programming

language may need to be selected. On the other

hand, dedicating an entire course (or more than

one course) to teach one programming language,

advanced topics including the interaction with

other applications (such as databases) may need

to be addressed. Thus the selection of general

purpose programming could provide wider area

of coverage and utility in this case.

Standalone versus Prerequisites

If the course is a prerequisite to other courses,

then faculty may have to select a language that

insures adequate transition to the advanced

course. For example, a beginner level

programming course may teach Visual Basic.

This course may be followed by another course

such as ―Advanced Programming in Visual

Basic.‖ The faculty has no choice but to teach

this programming language to ensure smooth

transition to the second and more advanced

course.

In some cases, programs dedicate one

programming course that serve as a prerequisite

for other courses to teach other programming

languages. For example, a program may have

one course titled ―Intro to Programming‖ at the

100 level and then ―Programming in C++‖ at the

200 level with Intro to Programming as a course

prerequisite. In this case and similar ones, it may

be beneficial to teach a beginner programming

language at the 100 level (or as the Intro course),

to provide solid understanding of the concepts

prior to taking as more advanced general purpose

programming courses.

The Two Graduate Programs

This section explains about the two courses that

teach the programming course/topic for their

master degree students in education at Indiana

University of Pennsylvania (IUP) and Robert

Morris University (RMU). The section first

discusses the degree program at IUP and then the

degree program at RMU. It explains about each

and addresses the issues associated with

selecting a programming language to teach at

their respective programs.

The M.Ed. Program at IUP

The Technology Support and Training (TST)

department at Eberly College of Business in

Indiana University of Pennsylvania (IUP) offers

a master degree program in business education

(M.Ed.). The main goal of this master degree is

to prepare students to be teachers in the business

and technology field. One particular course that

is included in this master degree program is a

capstone course called ―BTST680 Technical

Update‖. The course teaches the latest in

technology and includes four categories or sub-

coverage areas: Programming, Database, Digital

Media and Networking. The following describes

the selection of a programming language for this

course and the methods in which it is being

taught.

One of the main difficulties in teaching this

course is that most of the students enrolled do

not have prior programming experience. Some

students may have had exposure to programming

languages prior to this course, but the

information is often outdated and forgotten. Due

to these limitations, the course has to begin by

teaching the principles of programming and the

syntax and logic of programming.

Alice programming language was selected for

this course to teach the programming topic. The

main reason for selecting Alice is that the

students in this course are prospective teachers.

Therefore it will be useful to teach them this

language as they may need it for their

professional lives. The students in this course are

not looking for a programming job in the

industry; hence it will not help them to teach a

general programming language such as Java or

C++. Instead, they can focus on learning the

concepts of programming by using the tools

available in Alice.

The faculty member teaching this course has

been using Alice for the past two years. The

feedback from selecting Alice in this course has

been positive and enrollment has increased in

this course since introducing Alice it. The

learning curve in the course has also increased.

The students master the programming concepts

quicker as compared to previous semesters.

Students are required to complete and present a

final comprehensive project with Alice. All

presentations have been successful while the

students showed good understanding of the

programming terminology such as objects,

properties, methods, encapsulation, and

inheritance.

The M.S. Program in Business Education

Program at RMU

Selecting a first programming Language to Teach Prospective Teachers

Volume X, No. 2, 2009 135 Issues in Information Systems

Robert Morris University (RMU) offers a master

degree program in Business Education. This

program requires their students to take one

programming language. The programming

course is taught by the college of Information

Systems and Communication. The title of the

course is Visual Basic Programming and the

course number is INFS6120.

The Visual Basic programming course is

required by students who are enrolled in the

technology programs at RMU. Though this

course is not a formal prerequisite to other

courses in the program, but there is a common

understanding that this course is the first

programming course for students enrolled in the

M.S. Internet Information Systems program,

M.S. Information Systems Management program

,and other technology programs. Other

technology programs at the university require

their students to take additional programming

languages such as Java and C++. Though these

upper level courses do not have explicit

requirements to take the Visual Basic course,

there is, however, implicit understanding among

faculty and students that the Visual Basic course

is a first programming course in the program.

Reactions from students taking this course have

been mixed. Technology majors most often have

positive view of Visual Basic because it is

perceived as a simpler language to learn that

others like Java and C++. The same students also

view that Visual Basic has wider range practical

applications especially in terms of the various

connections it provided with the different

databases and web browsers. However, business

education students do not see it the same way.

For these students, understanding the logic of the

program is harder. Dealing with the syntax is

more of issue to these students. They just do not

view the time spent looking at a program to find

simple syntax errors is a feasible use of time. At

the same time, the most recent versions of Visual

Basic stresses the use of Object Oriented

Programming (OOP) techniques, so the same

students have to learn these OOP principles on

top of other programming concepts. This

additional complexity translates into difficulty

for these students learning how to program. So in

general, business education students do not favor

learning to program using the general purpose

programming languages while, on the other

hand, technology students favor it.

To simplify the comparison between the two

programs, Table 1 below shows the information

related to the selection of a programming

language at both Institutions (IUP and RMU) as

pertains to the factors listed in this section.

General Thoughts about Selecting a Language

at the Two Programs

When choosing a language, one needs to

consider why require computer languages at all.

Alice allows the student to take everyday

movements of simple objects and structure them

to create a more general movement. VB.Net and

other similar languages are designed to

implement a structured solution for business

oriented tasks. If logic development as an

abstract concept is the goal, Alice certainly

allows it to progress more easily and familiarly.

If solving a business-oriented problem is the

goal, VB is the more robust language for solving

this kind of problem easily. Using Alice to solve

business problems becomes very demanding and

actually more difficult to implement. The

program at Robert Morris is designed for the

logical analysis and solution of business

problems, and specifically leads to more

advanced courses linking with files and the web.

If students are expected to transfer learning to a

more detailed course, they would have to relearn

many of the syntactical concepts. It seems that

for those who want to know about logical

concepts in general, Alice is simpler, but for

those who need to know about the level of

specification required to solve business

problems, VB would be a better fit.

SUMMARY

This paper discussed the issues and challenges

that face the decision to select a programming

language to teach for students enrolled in a

master degree program in education. It began by

explaining the factors that make learning

programming languages a difficult task for

students. It then introduced a programming

language that is intended to provide solutions for

the points of difficulty that accompany the

learning of how to program. The paper then

elaborated on the experience of two graduate

degrees in education that teach programming in

their respective programs. The Master of

Business Education at Eberly College of

Business at Indiana University of Pennsylvania

and the Master of Science degree in Education at

Robert Morris University. The first program uses

Selecting a first programming Language to Teach Prospective Teachers

Volume X, No. 2, 2009 136 Issues in Information Systems

Alice to teach in their programming topics and

the second one uses Visual Basic in their first

programming course. More details on the factors

that led each program to select the language they

had selected for their programming course and

the responses of the students was also discussed

in the paper.

Table 1 – Comparing Programming

Language Selection Criteria—IUP and RMU

Program

Name

IUP RMU

General

Purpose Vs.

Beginner

programming

Beginner

programming

language

(Alice)

General

purpose

programming

(Visual Basic)

Major only

course versus

service course

Major in

Business

Education

only course

Required by

technology

majors,

business

education

majors as well

as other

majors

Entire Course

Versus

Selected

Topics

One

programming

topic among

four selected

topics

Entire course

teaches

programming

Standalone

Versus

Prerequisites

Stand alone.

Does not

serve as a

prerequisite to

other courses

Though not

formally a

prerequisite,

there is

understanding

that this a first

course for

other courses

REFERENCES

1. Adams, J. (2008). Alice in Action

Computing Through Animation. Boston,

Massachusetts: Course Technology.

2. Anewalt, K.(2008). ―Making CS0 fun: an

active learning approach using toys, games

and Alice‖. Journal of Computing Sciences

in Colleges, 23(3), 98-105. Retrieved March

28, 2008 from ACM Digital Library

http://www.acm.org/dl.

3. Baldwin, L.P.; Kuljis, J. (2001). ―Learning

Programming Using Program Visualization

Techniques‖. Proceedings of the 34th

Hawaii International Conference on System

Sciences – 2001. Retrieved April 17, 2008

from IEEE Computer Society Digital

Library http://www.computer.org/portal/

4. Carter, J.; Jenkins, T. (2002). ―Gender

differences in programming?‖. Proceedings

of the 7th annual conference on Innovation

and technology in computer science

education, Retrieved April 15, 2008 from

ACM Digital Library http://www.acm.org/dl

5. Dann, W.; Copper, S. & Pausch, R. (2006).

Learning to Program with Alice. Upper

Saddle River, NJ: Prentice Hall.

6. Guibert, N.; Girard, P.; Guittet, L. (2004).

―Example-based programming: a pertinent

visual approach for learning to program‖.

Proceedings of the working conference on

Advanced visual interfaces 358 – 361.

Retrieved March 30, 2008 from ACM

Digital Library http://www.acm.org/dl

7. Herbert, Charles (2007). ―An Introduction to

Programming with Alice‖. Boston,

Massachusetts: Course Technology.

8. Kelleher, C; Pausch, Randy (2005)

―Lowering the Barriers to Programming: A

Taxonomy of Programming Environment

and Languages for Novice Programmers‖.

ACM Computing Surveys 37(2) 83-137.

Retrieved March 28, 2008 from ACM

Digital Library http://www.acm.org/dl.

9. Marrero, W.; Settle, A. (2005). ―Testing

first: emphasizing testing in early

programming courses‖. Proceedings of the

10th annual SIGCSE conference on

Innovation and technology in computer

science education, 4-8. Retrieved March 28,

2008 from ACM Digital Library

http://www.acm.org/dl.

10. Porter, R.; Calder, P. (2004). ―Patterns in

learning to program: an experiment?‖.

Proceedings of the sixth conference on

Australasian computing education - Volume

30, 241-246. Retrieved April 18, 2008 from

ACM Digital Library http://www.acm.org/dl

11. Powers, K.; Ecott, S.; & Hirshfield, L.

(2007). ―Through The Looking Glass:

Teaching CS0 with Alice‖. ACM SIGCSE

Bulletin 39(1) 213-217. Retrieved March 28,

2008 from ACM Digital Library

http://www.acm.org/dl

12. Rosmaita, B. (2007). Making Service

Learning Accessible to Computer Scientists.

http://www.acm.org/dl
http://www.computer.org/portal/
http://www.acm.org/dl
http://www.acm.org/dl
http://www.acm.org/dl
http://www.acm.org/dl
http://www.acm.org/dl
http://www.acm.org/dl

Selecting a first programming Language to Teach Prospective Teachers

Volume X, No. 2, 2009 137 Issues in Information Systems

SIGCSE 07, March 7-10, 2007. Retrieved

December 20, 2007 from ACM Digital

Library http://www.acm.org/dl

http://www.acm.org/dl

