
Volume XI, No. 2, 2010 104 Issues in Information Systems 

DESIGNING AN INTRODUCTORY PROGRAMMING COURSE USING GAMES 

James Harris, Georgia Southern University, jkharris@georgiasouthern.edu 

Vladan Jovanovic,  Georgia Southern University, vladan@georgiasouthern.edu 

================================================================================== 

ABSTRACT 

There is a clear need in computing to attract and 

retain good students.  One way is to incorporate 

game programming into the curriculum [8, 10, 11, 

14, 22].  This paper presents the detail design of an 

introductory, leveling, programming course using 

game programming, elaborates on the course 

outcomes and expectations regarding student 

achievement, and discusses curriculum context, 

operational details, and the benefits of the 

standardized approach selected for the course 

delivery.  It is of interest to those who would like to 

alter the curriculum of their introductory 

programming course using a contemporary theme in 

order to motivate a generation raised on gaming. 

Keywords: Introductory Programming, Visual Basic, 

Games Programming, Course Outcomes 

INTRODUCTION 

The course CSCI 1230, Basic Programming is an 

introductory course in programming using the latest 

edition of the Visual Basic language.  This first 

programming course serves to provide baseline 

programming skills as a prerequisite for entry into the 

computer science and information technology 

curriculum, specifically to Principles of 

Programming I for the computer science students, 

and the Introduction to Java for students enrolled in 

information systems and information technology 

programs. The course was originally designed in 

1995 to help students without any programming 

experience. The course also serves as a computing 

requirement option for students of education and 

other majors outside the college of Information 

Technology (hosting CS, IS and IT programs). The 

course’s traditional emphasize was on essential 

procedural programming concepts and the use of 

programming as a problem-solving tool with an ever 

increasing coverage of object-oriented concepts. 

The perennial problem of delivering too much syntax 

with a little long term effects on programming skills 

acquisition forced us to reconsider both the student’s 

motivation and the cognitive demands of 

programming (and even what it means to know how 

to program). Consequently, games were adopted as a 

domain of examples allowing us to communicate a 

rich set of relevant concepts in an evolutionary 

manner. Guzdial and Soloway [8] found that games 

are an intrinsic motivator for students who are 

learning to program.  Visual Basic is an ideal 

environment for teaching game programming in an 

introductory course because a novice programmer 

can, in a short period of time, learn enough VB to 

produce impressive looking GUI programs [10].   

In this paper we present an outcomes based, course 

design in which most basic and some advanced 

concepts are presented using simple games. The 

focus on games is followed as much as possible, and 

came about to satisfy three objectives:  

a) to motivate students,

b) to retain students, and

c) to introduce students to game programming

as a field- job specialization.

 Our motivation as teachers stems from 

analysis/feedback by students and instructors from 

years of teaching introductory programming to the 

multitude of students with very diverse abilities and 

backgrounds in a broad variety of educational 

programs.   In the literature [8, 10, 11, 14, 22] games 

are discussed as a viable approach in support of 

teaching and learning.  None of the game specific 

sources such as [9, 19, 20, 21] or typical textbooks 

[1, 2, 3, 4, 5, 7, 12, 13, 15, 17, 18] are broad enough 

to be used as the course textbook, but collectively 

were the source of most exercises and assignments in 

our pilot course delivery. 

COURSE DESIGN 

CSCI 1230, Basic Programming, introduces students 

to the syntax and semantics of a modern 

programming language and most of the key 

programming constructs of structured, object-

oriented, and event driven programming. Both the 

specifics of the Visual Basic language and the 

software development process using a professional 

tool, MS Visual Studio Integrated Development 

Environment (IDE), are sufficiently explored in this 

course to achieve certain outcomes (see Table 1 in the 

https://doi.org/10.48009/2_iis_2010_104-113

mailto:vladan@georgiasouthern.edu


Designing an Introductory Programming Course Using Games 

 

Volume XI, No. 2, 2010  105 Issues in Information Systems 

 

appendix, “Course Outcomes mapped to Program 

outcomes and Expectation levels”.) 

A variety of methods of instruction are used 

including, but not limited to, lecture, laboratory 

demonstrations and practices, readings from textbook 

and periodicals, analysis of interesting Visual Basic 

programs, as well as those from the large 

standardized set of  group and individual 

programming assignments.  The self study portion 

also involved using Video Notes supplied with the 

modern textbooks [7]. The course meets for three, 50-

minute class periods per week for approximately 15 

weeks, plus a scheduled final exam which includes 

the presentation of a final project, the result of a 

collaborative work by student teams to design, 

develop, test, document and present an original 

Visual Basic game application.  A typical week of 

classes is as follows: 

 

 A short concept session including 

demonstrative examples of short live 

programs followed by an in class hands on 

tutorial providing immediate feedback,  

 A supervised, hands on lab session involving 

a more substantial programming problem, an 

assignment integrating and extending upon 

concepts previously presented.  This 

assignment is announced in advance, 

requires only minimal documentation and 

may be completed in class by the best 

prepared students, but is allowed to spill 

over class time encouraging students to 

collaborate and seek consultation from 

tutors  and instructors to complete the 

assignment before the next session, 

 A consolidation session improving upon 

alternative solutions presented.   After the 

in-class assignment, a more challenging take 

home assignment is given.   

 Homework (HW)   is assigned with an open 

ended option for more advanced students 

that may otherwise be bored and with some 

supporting hints and/or clarifying 

specifications.  Students are given 

opportunity to ask for clarification as most 

HWs are announced well in advance. The 

HW type assignment is characterized with 

more involved documentation and more 

extensive coding demands and is expected to 

be ready for the next week, typically at the 

time of a supervised lab session in the next 

cycle. More advanced subjects such as 

graphics, arrays etc. require multiple 

sessions of each type, however, the sequence 

follows the same pattern. 

 

If some concepts present a problem (on Labs or 

HWs), a remedial session  improving upon samples 

of student’s work is inserted. The advanced students 

are encouraged to help others and explore in depth 

before the class moves on to the next subject. Most 

concepts are illustrated with games with most of 

exercises, labs and HW assignments also based on 

games  Here are some examples of applicable games 

with the key concepts that they illustrate: 

a) Striker with controls/timers  

b) Picture Dictionary etc. with VB controls 

c) Dice and Slot Machines, with enumeration, 

random numbers, and functions,  

d) Frasier diagnostic simulation with strings 

processing,  

e) Black Jack and educational games with 

alternatives 

f) Hangman with loops and menus, and 

graphics 

g) Poker with arrays  (also elements for 3D 

games,) 

h) Juke Box with audio and media player, 

i) Tic Tac Toe and Sudoku with control arrays, 

j) Memory games and the likes with O-O  

k) Tetris, Space Invaders, with advanced 2D 

graphics 

l) Multi-player 3D games (optional) for 

advanced students  

 
Professional issues addressed include requirements, 

architecture and GUI documentation, black box 

testing, detail design and deployment.  A typical  

course schedule is shown below in Table 1.



Designing an Introductory Programming Course Using Games 

 

Volume XI, No. 2, 2010  106 Issues in Information Systems 

 

Weeks                Schedule of Classes by Topic Assignments 

Week1 

 

Week 2 

- Course: Requirements and Organization 

- Demonstration of the use of VB   

- VB Controls and events 

- Tutorials + LOGO as a Splash Screen 

 

Ch 1 - tutorial exercises 

Ch 2 - tutorial exercises 

Lab1-Logo plus Ch2-P2  

Week 3 - Project Standards +Visio: Documentation 

Variables, Input and Output 

Ch3- tutorial exercises  

HW1-Picture Dictionary  

Week 4  

 

 

 

Week 6 

Design and Logic Ch 4 

- Relational and Logical Operators,  

- If Blocks and Select Case Block    

- String processing; Frasier 

- Enumeration with Dice (Craps) game 

GUI Design: With elements of Graphics GDI+ 

- Additional Controls, Timers- Striker game  

Ch 4-tutorials 

 

 

Lab 2 –Black Jack  

HW 2- Slot Machine 

Week 7 

 

 

Week 8  

Week 9 

Ch 5 Loops and Testing for VB programs;    

    Multicurrency Converter, data validation, 

    -  Using Visual Studio Debugger  

    Ch 6 Procedures, Subs and Functions +  Media, 

VTOC diagrams and modular design and testing. Additional 

content: games Hangman, Snake, etc 

Ch 5- tutorials  

Ch 6- tutorials 

Ch 7- tutorials 

 

Lab 3: JukeBox 

Week10 

 

Ch8-Arrays  including multidimensional Arrays  

- Additional: Control Arrays, Security Pad  

- case study Sudoku 

Ch8- tutorials  

HW3: Poker  

Lab 4: Tic Tack Toe 

Week12 

Week13 

Week15 

Intermediate VB for Game Programming; 

  - case studies: Tetris, Space Invaders etc.  

  - advanced game concepts, 3D Direct X 

HW 4: Memory Game 

Week16 Final Exam   Creative Game-Term 

Project 

 

Table 1: A Sample Course Schedule for a Course in Visual Basic with Game Programming 

 

CONCLUSION 

 

We are still working out fine balances among 

constant content/delivery innovation, individual 

motivation/experimentation and standardization of 

expectations and the verification of achievements. We 

plan on systematically comparing our newly 

established game programming approach with the 

traditional approach this fall.  Four sections of VB 

will be taught, two with a game programming 

emphasis and two without.  Student course 

evaluations, dropout rates, student success rates 

(percent passing the class, and percent with A grade) 

and student and instructor surveys will be used as 

measures. In addition, we will compile and analyze 

past several years of student success rates with the 

traditional approach to the introductory programming 

course, with the same instructors as well as with 

several different ones, all in order to establish a 

relevant but unbiased baseline. One working 

hypothesis is that more programming concepts can be 

covered with better student retention and  higher 

success (level of outcome achievement). We are 

certainly not the first to advocate using games first 

(23) but intend to make this a strategic choice, 

spreading this motivating influence throughout the 

curriculum. 

One of the remaining problems is to vary HW 

assignments to prevent reuse of code solutions 

without sufficient intellectual and creative 

engagement among parallel course sections and 

successive semesters. We are of the opinion that with 

increased faculty commitment and better student 



Designing an Introductory Programming Course Using Games 

 

Volume XI, No. 2, 2010  107 Issues in Information Systems 

 

motivation positive outcomes will fully materialize 

and we might be able to restructure CS1+CS2+Data 

Structure sequence that comes after the Intro course 

discussed here. Recently we started offering a game 

programming certificate to CS majors and this is 

already proving to a great recruiting tool.  

We are also working on a game programming 

framework (see Appendix, Figure 5) for integration 

with professional game engines and similar artifacts 

later in the curriculum. 

 

REFERENCES 

 

Bell, D., Par, M. Visual Basic.NET for Students, 

Addison Wesley 2003. 

 

Bradley, J.,Millspaugh,A., Programming in Visual 

Basic 2008. 

 

Crew, T.,Murphy, C., Programming Right from the 

Start with Visual Basic.NET, Pearson 2004. 

 

Deitel,P,, Deitel, H.,Visual Basic 2010 How to 

Program, Pearson 2011. 

 

Ekedahl, M., Guide to Developing and Implementing 

Windows-Based Applications with Microsft Visual 

Basic.NET, Thomson 2004. 

 

Flynt, J. Software Engineering for Game Developers, 

Thomson 2005. 

 

Gaddis, T.,Irvine, K., Starting out with Visual Basic 

2010, 5
th

 edition, Addison Wesley 2011.  

 

Gudzdial, M., Soloway, E., (2002), Teaching the 

Nintendo generation how to program, 

Communication of the ACM, Vol. 45 N4, pp 17-21.  

Harbour, J. Visual Basic Games Programming with 

Direct X, Premier Press 2003. 

 

Hu, M. (2008): A Framework for teaching Novice VB 

Programming Using Motivational Game Scenarios, 

20
th

 Annual Conference NACCQ, New Zealand, pp 

89-96. 

 

Ling, W., Programming Sudoku, Apress 2006. 

McKeown, J., Programming in Visual Basic 2010, 

Cambridge University Press, 2010, 

 

Patric, T. Start to Finsih Visual Basic 2005, Addison 

Wesley 2005. 

 

Purewal, T., Bennet, C., (2006), A framework for 

teaching polymorphism using game programming, 

Journal of Computing Sciences in Small Colleges, 

V22, N2, pp 154-161. 

 

Reynolds-Heartle, R., OOP with Visual Basic.NET 

Step by Step, Microsoft Press 2002. 

 

Schneider, D., An Introduction  to Visual Basic 2010, 

8
th

 edition, 2010.  

 

Shelly, G. Hoisington, C., Visual Basic 2008, Course 

Technology 2009. 

 

Stephans, R., Visual Basic 2005 Design and 

Development, Wrox 2007. 

 

Walnum, G., Teach Yourself Game Programming 

with Visual Basic in 21 days, SAMS, 2001. 

 

Walsh, P., LaMothe, A., The Zen of Direct 3D Game 

Programming, Prima 2001. 

 

Weeler, D, et all, Beginning .NET Game 

Programming in VB.NET, Apress 2004. 

 

Xu, C., (2006), Why and how to teach game 

programming, FIE Conference, Las Vegas, pp 215-

220. 

 

S. Leutenegger and J. Edgington, “A games first 

approach to teaching introductory programming”, in 

Proceedings of the 38th SIGCSE Technical 

Symposium on Computer Science Education 

(SIGCSE '07), pp. 115–118, Covington, KY, USA, 

March 2007.

 

 

 



Designing an Introductory Programming Course Using Games 

 

Volume XI, No. 2, 2010  108 Issues in Information Systems 

 

APPENDIX 

 

Table2:  ABET Learning Outcomes 

  

Learning Outcomes:  

CSCI 1230 Introduction to Basic Programming  

Mapping to ABET 

Learning Outcomes 

Understand and use fluently basic blocks of VB.NET - syntax/semantics, identify and 

fix syntax errors, compile, build and execute short (Visual Basic) programs using 

Microsoft's Visual Studio Integrated Development Environment 1a, 1i 

Understand and use comments, constants, variables - names, types, and size 1a, 1i 

Ability to create GUI's using controls 1a, 1i 

Ability to write code using built in arithmetic operators and expressions 1a, 1i 

Ability to select appropriate if, for, while and do-until selection and iteration 

statements and combine them in a well structured manner 1a, 1i 

Ability to design logic for small functions and sub programs 1a, 1i, 2b 

Ability to understand syntax and use of text file I/O 1a, 1i 

Understand how to read, identify, write and use test drivers and test cases for testing 

simple Visual Basic classes and programs 1a, 1i 

Ability to create, implement, and use one and two-dimensional arrays. 1a, 1b 

Ability to use an IDE to strep through and debug code 1a, 1b 

Ability to create simple games, including elaborate interactions, graphics, sound and 

other media 

1a,1b,1c,1d,1f,1h,1i,2a,2

b 

 

1. General: 

(a) An ability to apply knowledge of computing and mathematics appropriate to the discipline; 

(b) An ability to analyze a problem, and identify and define the computing requirements appropriate to its 

solution; 

(c) An ability to design, implement and evaluate a computer-based system, process, component, or program to 

meet desired needs; 

(d) An ability to function effectively on teams to accomplish a common goal; 

(e) An understanding of professional, ethical, legal, security, and social issues and responsibilities; 

(f) An ability to communicate effectively with a range of audiences; 

(g) An ability to analyze the local and global impact of computing on individuals, organizations and society, 

including ethical, legal, security and global policy issues; 

(h) Recognition of the need for, and an ability to engage in, continuing professional development; 

(i) An ability to use current techniques, skills, and tools necessary for computing practice. 

2. CS Specific: 

(a) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the 

modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs 

involved in design choices; 

(b) An ability to apply design and development principles in the construction of software systems of varying 

complexity. 

 

 

 

 

 



Designing an Introductory Programming Course Using Games 

 

Volume XI, No. 2, 2010  109 Issues in Information Systems 

 

Table 3: Key concepts we present throughout the curriculum- only the first 15 in VB: 

 

1. Context: Integrated Programming Environment, Application Types, Projects, Views 

2. GUI: controls (forms, buttons, textboxes, picture boxes, etc.) their properties and values 

3. Keywords, (built in) native types and statements: operands, types, values, operators  

4. Library methods and parameters 

5. Events and timers 

6. Procedures and functions, return types, parameter passing by value and by reference 

7. Structured blocks and their nesting (ifs and case based alternatives, and loops) 

8. Graphics GDI+ and Media 

9. Documentation, specification, description, representation 

10. Black box test planning and execution 

11. Debugging 

12. Input Validation  

13. Arrays and Files  

14. 3D elements with  Direct X  

15. Deployment (Intro VB) 

16. Assembly, builds, resources (CS1) 

17. Exception handling (CS1) 

18. Structures (CS1) 

19. Modules (CS1) 

20. Treads (CS1) 

21. Classes and objects with their methods, (CS1) 

22. Aggregation and Inner classes (CS1) 

23. Interfaces (CS1) 

24. Regression test automation (CS1) 

25. Inheritance and Polymorphism (CS1) 

26. Containers and advanced GUI design (CS2) 

27. Advanced event driven programming (CS2) 

28. Reflection (CS2) 

29. Regular Expressions, Automata, and Functional programming (Theoretical Foundations) 

30. Encryption Programming (Computer Architecture- Assembly programming) 

31. Team programming, Configuration Management using shared repository, (Data Structures) 

32. Collections (Data Structure) 

33. Templates-generics (Data Structures) 

34. Core algorithms (sorting, searching, merging, etc.) complexity analysis  (Data Structures) 

35. SQL, XML and LINQ (Data Base) 

36. Socket Programming (Data Communication) 

37. Web access to DB (Distributed Web-systems Design) including client and server side scripting 

38. Web services (Distributed Web-systems Design) 

39. Patterns, Architecture and Frameworks (Object Oriented Design) 

40. Model Based Development and Testing Automation (Object Oriented Design) 

41. Advanced Algorithms Design and Analysis (Algorithms Design) 

42. Artificial Intelligence and Logic Programming (Artificial Intelligence) 

43. Graphics programming, transformations, physics  (Game Programming) 

44. Multiplayer Games Design and Coding (Game Programming) 

45. Program Generators and Meta Programming (Software Engineering) 

46. Metrics and Quality Assurance (Software Engineering) 

47. Capability, Maturity and Process Improvement (Software Engineering) 

48. Etc. 

 

 

 

 

 

 



Designing an Introductory Programming Course Using Games 

 

Volume XI, No. 2, 2010  110 Issues in Information Systems 

 

Table 4: Documentation sample 

 

 

Document Project Homework Lab Exercise Example 

 

 

Feedback-Cover Page (instructor adds) X X       

 

Feedback Code Scorecard (instructor adds) X X X x?   

 

Requirements Docs:           

 

Problem Statement-scope X X X     

 

Use case -Scenarios X X       

 

Storyboard X         

 

Other as appropriate- a student choice X?         

 

Design-Planning-Users docs:           

 

GUI mockup X X x? x x 

 

Test Plan- and report X X x?     

 

Event Plan X X x x x 

 

Structure and/or Class Diagram X X x     

 

Installation-users-guide X?         

 

Code docs:           

 

Source code X X X X x 

 

Properties X X x x   

 

            

 

Legend  X- student; x – Instructor; ?-  possibly      

 

      

 

 
 

 
 
 
 
 
 



Designing an Introductory Programming Course Using Games 

 

Volume XI, No. 2, 2010  111 Issues in Information Systems 

 

 
 

 
Figure 1: Tic-Tac-Toe GUI 

 

 

 

Figure 2: Tic-Tac-Toe Structure Diagram 

 

TictacToe

Practice

Btn

StartNewGame

 

btnClick

(all 9 btns)

FormLoad

 

Quit etc.

 

NewGame

 

CheckForWinner

 

CheckThree

 

CheckTie

 

IsEmpty

 

 

 

 

 

 

 



Designing an Introductory Programming Course Using Games 

 

Volume XI, No. 2, 2010  112 Issues in Information Systems 

 

Figure 3: Hangman (simpler without menus) 

   

 

 

 

Table 5: Test Plan for Hangman 

 

Test Test Plan Hangman V3 Comments   Report Pass 

Number Input-1 improvements expected actual Fail 

1     blank not OK     

2 Book   OK     

3 BOOK   OK     

4 book   OK     

5 Blank   OK     

6 Wastepaper   OK     

7 A   OK     

8  an    not     

10 watter hole   not     

11 37   not     

12 @   not     

13 Hypopotamus   too long     

14 xxxxxxxxxx…………….xxx   not     



Designing an Introductory Programming Course Using Games 

 

Volume XI, No. 2, 2010  113 Issues in Information Systems 

 

Figure 4:  Stryke the Flying Dragon - click on the skateboard rider to score 

 

 

 

Figure 5: Meta-model for Game Design Frameworks 

 

CHARACTERISTICSSELECTED
SCOPE

PLAYS

LEVEL

CHARACTER

WORLD

ROLE
ADVENTURE

MASTER

PLAYER

GAME

Metamodel for Roleplying Games 

Design Framework- GURPS_DM


