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ABSTRACT 

The paper presents a: a) brief overview and analysis of existing approaches to the data warehouse (DW) evolution 
problem, and b) detailed description of the research idea for the DW evolution problem (primarily intended for 
structured data sources and realizations with relational database engines). We observe the DW evolution problem 
as a double issue - from the DW perspective, and from the master data management (MDM) perspective. The 
proposed general solution will include a Data Vault (DV) model based metadata repository that will integrate the 
DW data and metadata with the MDM data and metadata. This historicized metadata repository will manage 
schema versions and support schema changes. We believe this integration will: a) increase the quality of data in the 
Enterprise Data Warehouse (EDW), b) increase the quality of the metadata in the EDW, and c) increase the 
simplicity and efficiency of the DW and the MDM schema evolution. 
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INTRODUCTION 

A data warehouse (DW) integrates current and historical data from a number of heterogeneous data sources into a 
central repository of data which is then used for business reporting, trend projections and quick data analysis. 
However, the DW environment is in a constant change – data sources often change their structure and content, and 
business needs and analytical requirements also change over time. These changes have to be propagated to and 
implemented into the DW, so the DW could accurately reflect the current state of the real world and provide for 
effective business analysis.  Evolving the DW is a hard and resource consuming task and we observe it as a DW 
evolution problem. Although the database (DB) evolution problem is well researched, and some methods and 
solutions were borrowed and modified for the purpose of solving the DW evolution problem, the DW requirements 
today are increased in respect to the scope (multiple sources and multiple data types) and preservation of the history 
of changes. The DW needs to preserve the history of data and metadata changes, as well as the history of schema 
and scope changes, for a very long time period. Nowadays business and technology changes are constantly present, 
so it has become extremely important to find an appropriate solution to the DW evolution problem. Many 
researchers have studied this problem through three main approaches - schema evolution [4, 8, 11, 17, 21, 29], 
schema versioning [1, 5, 7, 9, 22, 23, 27] and view maintenance [2, 6, 10, 24, 25, 26]. In this paper we will briefly 
present related work and then proceed to describe our general research idea and approach for solving this problem. 
The paper is organized as follows – in section II a related work is briefly presented and analyzed, in section III our 
general research idea is described as a work in progress, and in section IV the conclusion and directions for our 
future work are presented.   

RELATED WORK 

As we mentioned in the Introduction, the DW schema evolution research has a very broad scope and the related 
work can be observed through the three main and above-mentioned approaches.  In the schema evolution approach 
the schema can only have one version at a given time - the current version, where the data is stored. The current 
version is directly transformed into a new version, after the changes are made. This causes the loss of history (of 
data and schema changes), because the previous schema versions are not preserved. In order to avoid previously 
available structures and data becoming unavailable in the new version and enable the reconstruction of structures 
and data, schema versioning approach has been developed. In the schema versioning approach data is transferred 
from existing schema to the new schema. The changes are made to the new schema and the old schema versions are 
preserved. As this is basically the only difference between these two approaches, schema evolution approach is 
usually considered as the weaker case of schema versioning approach. Also, in both approaches the DW is usually 
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defined as a multidimensional schema with the fact and dimension tables and data cubes. Here authors usually study 
the schema changes in multidimensional DB, based on the various levels of updates (such as dimension, instance, 
level, fact, attribute, data cube, hierarchy, measure, constraint, quality or structure updates). Some authors propose 
new update operators [5, 9, 11, 17, 22], frameworks for multidimensional schema evolution and versioning [4, 27], 
dimension and data cube description and visualization tools and prototypes [29], and transformation, migration and 
mapping models, mechanisms, systems and prototypes [1, 7, 8, 21, 23]. We noticed that the problem of change 
propagation in data mart (DM) is quite well researched and many good and often complementary solutions were 
proposed. However, the process of schema evolution and versioning is still demanding in terms of invested time and 
resources (particularly at the present time due to the increase in the number of changes in the data sources and user 
requirements). In the context of schema evolution and versioning we can say there is room for improvement with 
regard to a still slow and expensive processes of data transformation and migration between different schema 
versions, loss of information during those same processes (the problem of preservation of schema consistency and 
data integrity still exists), inefficient query and application rewriting and adapting to the new schema version, 
inefficient and error prone cross-querying the versions, a lack of effective integration, organization and management 
of metadata, a lack of defined mechanism for monitoring the data source model evolution, a lack of support for the 
model relativism, and a lack of support for the data security evolution. In the view maintenance approach a DW is 
defined as a set of materialized views over data sources. View maintenance approach can be categorized further into 
two approaches: view adaptation (metadata with the latest structural information is added to materialized view in 
order to adapt to changes) and view synchronization (rewriting the view after the changes in data sources). Here 
authors usually study and propose the algorithms for (basic and incremental) view maintenance and lineage tracing 
[6, 10], formal frameworks, models and update operators for view maintenance [26], mechanisms for view versions 
[2], mechanisms, systems and prototypes for view rewriting [25] and mechanisms for obtaining and evaluating 
quality of data during the schema evolution [24]. Although many interesting solutions are proposed, manual 
rewriting of the view is still a common practice. Also, to the best of our knowledge, the problems of network 
saturation, anomalies and inconsistent changes in the views are still present, the proposed approaches are still 
limited in terms of efficiency and performance and ETL processes are completely ignored in this approach. 
 

RESEARCH METHODOLOGY 
 
Problem 
 
The problem of the DW evolution is the propagation of (and adaptation to) constant changes in its environment 
(primarily including changes in data sources and business requirements). As we already mentioned, the DW needs to 
preserve the history of data and metadata changes, as well as the history of schema and scope changes, for a very 
long time period. Literature analysis shows us that many of the important issues are still not quite successfully 
resolved. We will describe our general research idea for solving some of the above mentioned issues.  
 
Research idea 
 
We approach the DW evolution problem from two perspectives – the usual data warehouse perspective, and the 
master data management perspective.  Master Data Management (MDM) has been traditionally used as a physically 
independent database of master and reference data and definitions for operating systems [3]. MDM represents the set 
of policies, governance, standards, processes and tools that define and manage the master and reference data of a 
business organization to provide a single point of reference. Master data are the key business entities and their 
descriptive attributes (e.g., the buyer has the name, address, date of birth, etc.). They represent a unique source of 
essential business data and are used by multiple (ideally all) systems, applications, and business processes of the 
organization. Reference data are used for the validation of other data and they define the set of allowed values that 
the other data fields may use.  In the case of MDM, as in a DW case, there is the problem of schema evolution after 
changes in the data sources or user requirements – so we will consider it a double issue or a dual problem. As such 
we will aim to develop a dual solution in which the DW and the MDM evolution problem will no longer be 
managed separately, but together (the MDM integrated with the DW). From the DW perspective every fact that is 
associated with dimensions is observed and star schemas are standard representation used for visualization. From the 
MDM perspective every master entity (dimension) that is associated with events (facts) is observed and an inverse 
star-like schema can be used for visualization [18].  
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Figure 1 shows an architecture diagram for our future dual solution. It includes a Data Vault (DV) based modeling 
approach [15, 19] for the data repository (RDV + BDV) and the metadata repository (MDV).  We use Data Vault 
based modeling approach because of its many advantages, and also because we believe that the relational model 
alone, as a logical model, is not convenient for effective and simple DW schema evolution support as it does not 
separate identity from the properties (attributes and relationships).  The Data Vault (DV) is a data modeling method 
that supports design of data warehouses for long-term storage of historical data collected from various data sources. 
The DV method is already based on the assumption that the DW environment is in constant change and it highlights 
the need for tracking the origin of data contained in the database, through empirically defined set of metadata. This 
enables tracking the value back to the source and tracking the history of changes. Also, according to the DV method, 
there is no difference between good and bad data - all the data is stored at all times, regardless of whether they are 
adaptable to business rules, thus avoiding the loss of information. The structural data are explicitly separated from 
descriptive attributes, regardless of whether they come from the same source. This makes the model flexible to 
changes in business environment, and allows for a gap analysis and trend projections (patterns can be mined from a 
single sheet of business keys and links can have dynamic adaptability). Furthermore, any change is implemented in 
the model as an independent extension of the existing model, which means that the changes do not affect current 
applications. This also means that all versions of the application can be based on the same, developing DB. All 
versions of the model are a subset of the DV model. Finally, the DV method enables fast parallel loading which 
reduces the costs of time and other resources. In our proposed dual solution architecture (Figure 1), the data 
repository (RDV + BDV) will preserve raw and master data as well as history of data and data changes. Metadata 
repository (MDV) will preserve metadata, as well as history of metadata and metadata changes. Also, MDV will 
integrate the DW metadata with the MDM metadata in a common model to serve as an extension of a generic 
DBMS catalog. This way, the problem of the DW and the MDM schema evolution will be addressed at the general 
level and a permanent general solution situated on a higher (meta) level will be developed. The end result will be a 
flexible, modular solution which will be able to track and manage changes in both data and metadata, as well as their 
schemas. We will now explain the proposed architecture from Figure 1 in more detail. The proposed architecture 
consists of four parts: a) data sources, b) enterprise DW, c) reporting DW and d) user analysis.  
 
 

 
 

Figure 1. Architecture Diagram 
 
 
a) Data Sources 
The DW today includes many heterogeneous data sources. In the literature and practice, data sources are usually 
distinguished by their place of origin and maintenance. Internal (or operating) sources contain data that are defined, 
related and maintained in various parts of the business organization (e.g. orders from sales, inventory status from the 
warehouse, potential customers from marketing, etc.). External sources contain information that is not collected by a 
business organization, rather a source outside the organization (e.g. various proprietary databases, address and phone 
directories, etc.). Accordingly, we make a distinction between internal and external reference data (which is obtained 
from internal or external data sources). 
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b) Enterprise DW 
Enterprise DW (EDW) includes the raw data vault (RDV) and business master data vault (BDV), which are 
integrated via metadata repository data vault (MDV). 
With the help of ETL tools and processes data is extracted from data sources and loaded into the RDV. The RDV 
contains actual (unchanged) copies of the originals from the data sources. Once the data is entered into the RDV, it 
is no longer deleted (all future changes are implemented through additions-only). This means that copies of the 
originals are kept permanently in RDV. In this way the loss of information is avoided and a solid basis for the audit 
process is provided. We can say that the RDV is a component of the EDW which is data source-oriented. 
The BDV is a component of the EDW which is report-oriented. It is created by upgrading the RDV with the 
application of standardized master data and business rules, for the purpose of business integration. The RDV and the 
BDV are shown as separate systems in a logical representation in Figure 1. However it is possible to physically 
implement them individually or as a single system. We will physically implement them as a single database (i.e. one 
DV model) where the RDV and the BDV structures are connected via the same-as links. 
EDW consists of a single DV model, which is partially oriented towards the data source side (RDV), and partially 
oriented towards the MDM and reporting side (BDV). Also, because they are now physically separated, we can 
distinguish reversible (light) and irreversible (heavy) transformations [16]. Reversible transformations are used for 
loading data from a data source into the RDV, and it is possible to reverse their effects, in order to obtain the 
system-of records. They allow RDV to reach the exact copies of the original from the data source. Irreversible 
transformations are mainly based on the business and master rules and are usually irreversible. In this case, both the 
transformations and the original data must be preserved in order to trace exits back to the source and reconstruct 
them if necessary. That is why it is necessary to preserve the RDV part of EDW. The irreversible transformations 
are moved downstream - after RDV, towards BDV and reporting DW (they are loading materialized DMs). This is 
the key idea for getting an integrated EDW system of records [16, 19] and a basis for the data governance. 
Finally, MDV is the metadata repository which serves to integrate the RDV and BDV in the EDW system of 
records. We can say that the MDV represents the DW on the DW. MDV logical model is based on the DV model. 
The aim of our research is to define and formalize the MDV model for the integration of dual solution EDW (DW 
and MDM).   

 
 

Figure 2. Simplified Working Version of the Metadata Data Vault (MDV) Model 
 
Figure 2 shows a simplified working version of the MDV model. We see that the MDV keeps historicized hubs, 
links, satellites, attributes, domains and reference tables as a hub in a DV model (shown in blue).  All hubs in MDV 
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have a corresponding DEFINITION satellite attached to them (shown in yellow). Standard details of DV meta-level 
attributes (loadDTS, loadEndDTS, recSource, busKey, etc.) are not shown (for the purpose of a readability of the 
model) but apply to all DV constructs at the MDV level. Links between entities in the MDV (shown in red) are also 
simplified for the purpose of readability of the model. L_SA are same-as links connected to other hubs in the model 
and they serve to define master HUBS, LINKS, SATELLITES, ATTRIBUTES, SOURCES, RULES, etc. 
BUSINESS_KEY are satellites connected to every hub in the model (business key is placed into a separate satellite). 
We also plan to resolve (at the meta-level) the transformation from a source into the RDV (via the extraction rules; 
SOURCE-L12-RULE), the transformation from the RDV into the BDV (via the business and master rules; RULE-
L9-ATTRIBUTE) and finally, the transformation from the integrated RDV/BDV into the DM (also via the business 
rules and materialized views; RULE--ATTRIBUTE-MV- L10). Furthermore on a meta-level, the security aspect 
will be resolved, i.e. the user's access rights will be historicized and managed. Considering that, SOURCE is a hub 
representing source systems and RULE is a hub representing business and master rules (with corresponding CODE 
satellite). AUTHORITY is a hub linked to other hubs in the MDV, for security aspect and user access rights. A MV 
(materialized view) is a transformation from the integrated RDV/BDV into the DM and is shown as a hub.  
Metadata reference tables (for example, internal metadata categorization such as metadata entities type codes and 
descriptions and all additional views) will be treated as MDV_REFERENCE (shown in gray). MDV will manage 
master sources, rules and other MDV entities, which is shown as a same-as link L_SA on every hub in the model.  
The proposed architecture permanently stores historical and master data into the EDW, which is why there is a 
return link to the data sources. This not only solves the problem of the DW evolution, but the MDM evolution as 
well, at the same (integrated) level. Also the data definitions, which are usually stored in the MDM, are now stored 
in the MDV together with the rules of transformations (specifications for the ETL code), and here they are treated as 
regular data. In this way historicized metadata repository (MDV) manages schema versions and supports schema 
changes. However, we would stress that the MDV model shown in Figure 2 is a fairly preliminary, a true working 
(draft) version for now, because the research is in progress. We are still working on a source, materialized view, 
transformation and security aspects, which are not shown in detail in a MDV model in Figure 2. For this reason, the 
formal definition and description for each component of the MDV model is not presented. 
 
c) Reporting DW 
Reporting DW (RDW) consists of a derivative (summarized, aggregated and computed) data stored in materialized 
or virtual DM. User has a direct access to the data stored in RDW, for the purpose of analysis and reporting. 
 
d) User analysis 
This part of the architecture is the user side of the system, where the tools for analysis and reporting are located. 
With the help of these tools the user is directly accessing the RDW. 
 
Research validation approach 
 
Our research centers upon the following question:  Can proposed DW and the MDM integration through the MDV 
metadata repository demonstrably serve as a permanent general solution able to effectively track and manage 
changes in both data and metadata (including their schemas?)   
Once proposed MDV model and set of change cases as requirements are completed and fully formalized we intend 
to develop logical arguments for validating principal claims of the proposed approach. To empirically validate 
proposed approach an early system prototype will be developed, as a full proof of concept implementation, with a 
performance based experimental benchmark test based on a completed comprehensive case study model. As our 
work is still evolving all this will not be presented here, but in the meantime, and to serve us as a stepping stone in 
exploring problems and refining details for the solution a case study will be experimented with.  
 
Research requirements 
 
A key component in our dual solution is obviously the MDV, which can also be observed as a DW on the DW. 
MDV will serve to integrate raw and persistent DW with the business aligned MDM in order to obtain one 
consolidated EDW system of records. In the context of DW evolution, starting requirements for our dual solution are 
(we expect MDV will be able to): 1) track the origin of data, 2) track the history of changes (of data and metadata), 
3) provide a mechanism for monitoring data source model evolution, 4) provide a mechanism for monitoring user 
requirements evolution, 5) support the data security evolution, 6) avoid loss of information, 7) enable faster and less 
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expensive migration and transformation of data, 8) support effortless cross-version queries, 9) enable trend 
projections, and 10) provide effective integration, organization and management of metadata. 
In order to better understand the system requirements and effects of the proposed approach we will explore basic 
schema evolutions change cases, see Table 1, later on. 
For the analysis of requirements, we will use a business case which deals with a DW for the outdoor and adventure 
equipment sales company (high rate of change in marketing campaign budgets and product price lists and 
categorization). All data model examples are made in Erwin 9.5 and are based on IDEF1X (Figures 2 to 4). 
 

 
 

Figure 3. Data models for source databases 
 
Figure 3 shows two simplified logical entity-relationship (ER) models for two data sources – Sales DB and 
Marketing DB. The Sales DB represents a sale of ITEM to CUSTOMER where SELLER places an ORDER for 
multiple items (one per ORDER_LINE). Every seller belongs to a branch, and every order has its class (which 
affects the amount of payment discount). The Marketing DB serves to manage marketing CAMPAIGNs. Every 
campaign has its own PRICE_LIST, which is created considering the CLASS of campaign and the PRODUCT. 
Products are grouped into SEGMENTs, and segments are grouped into CATEGORYs. Also, campaign has 
marketing BUDGET for every product. 
Figure 4 shows logical DV model for our dual solution (RDV+BDV). Each hub, link and reference table have load 
date time stamp (loadDTS) and record source (recSRC) attribute, and each satellite has load end date time stamp 
(loadEndDTS) and record source (recSRC) attribute. We will just not show those attributes in the Figure 4, for the 
purpose of the readability of the model. Also for simplicity business keys were used instead of recommended 
sequence number keys. BDV model is shown as a second layer, an extension of the RDV model (by applying 
business and master rules). The RDV logical model is represented in darker shade of blue (hubs), red (links) and 
yellow (satellites) and the BDV logical model is represented in lighter shades of blue, red and yellow, respectively. 
Reference tables are shown in light gray and are managed in the BDV layer.  
Hubs in the RDV (source entities) are through MDM links connected to the appropriate master hub in the BDV 
(master/target entities). This MDM link maps an entity to a standard (master) entity at any given point in time. Every 
master hub has at least one satellite (with the descriptive attributes) and one same-as MDM link. Same-as MDM 
links represent hierarchical (parent-child) or different business relationships between the master entities and serve to 
recognize and eliminate duplicates (duplicate record becomes a child to the master record parent). They map an 
entity to other entities within a single table, at any given point in time. For example, customer hub in RDV 
(H_CUST) is cross-referenced to customer master hub in BDV (H_CUST_MASTER) through MDM link 
(L_CUST_MDM). H_CUST_MASTER contains the “golden copy” of the customer’s data and has a same-as MDM 
link (SAL_CUST_MDM) that maps a record to other records within a H_CUST_MASTER hub. 
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Figure 4. Data model for our dual solution (RDV+BDV) 
 

Some of the typical DW evolution scenarios are changes in the existing data source schemas, additions of a new data 
sources, changes in the user requirements (business rules), changes in types of analytical systems or data sources, 
and changes in user access control (security). In this paper we will observe only the effects of changes in the existing 
data source schemas on the RDV, BDV and MDV (the DM is out of the scope of this paper). In Table 1 we observe 
following changes in the existing data source schemas and their effects on the RDV, BDV and MDV: Addition of 
the new relation, Modification of an existing relation, Deletion of the existing relation, Addition of a new attribute to 
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an existing relation, Modification of an existing attribute in the relation, Deletion of an existing attribute from the 
relation, Addition of the new relationship between existing relations and Deletion of an existing relationship. 
Similarly to the effects described in the Table 1, addition of a new data source implies the creation of new hubs, 
links, satellites and reference tables in the RDV and the use of new and existing business rules in the BDV, as well 
as implementing appropriate changes of metadata in the MDV. With additions of a new data sources we can apply 
the same changes we applied in the previous case (changes in the existing data source schemas), with some 
additional changes in the MDV: a) a new record is added into SOURCE hub and SOURCE_DEFINITION satellite, 
b) new records are added into RULE hub and RULE_DEFINITION and CODE satellites, c) new records are added 
into RULE-SOURCE and RULE-ATTRIBUTE links, and d) possibly new records are added into SOURCE and 
RULE same-as links (for defining master sources and rules). Changes in the user requirements (business rules – 
which primarily affect the BDV and DMs), changes in types of analytical systems or data sources, changes in 
materialized views, and changes in user access control (security) are very important but are still subject of evolving 
research. 

 
Table 1. Effect of changes in the existing data source schemas on the RDV, BDV and MDV 

 
Source schema 

change 
Example Effect on RDV Effect on BDV Effect on MDV 

Addition of a 
new relation 

SUBCATEGORY 
in Marketing DB 

- addition of new hubs, links 
and satellites (simple extension 
of the model) 
- addition of a validity satellite 
for the SEGMENT-
CATEGORY link 

- addition of a new link 
(L_CAT_MDM) which 
connects category master 
hub in BDV with segment, 
subcategory and category 
hubs in RDV 

- addition of new records in the 
LINK, HUB, SATELLITE and 
ATTRIBUTE hubs (for 
SUBCATEGORY) 
- addition of a new record in a RULE 
hub and RULE_DEF and CODE 
satellites  

Modification of 
an existing 
relation 

SELLER into 
VENDOR in 
Sales DB 

- no action necessary - no action necessary - addition of a new record into 
HUB_DEF satellite 
- addition of a new record into 
RULE_DEF and CODE satellite 

Deletion of an 
existing 
relation 

CATEGORY 
from Marketing 
DB 

- no action, no deletions, 
updates only 
- addition of a new validity 
satellite on a relation hub and 
all its links 

- no action, no deletions, 
updates only 
- addition of a new validity 
satellite on a master hub 

- addition of a new record into HUB’s 
validity satellite 
 - addition of a new record into 
RULE_DEF and CODE satellite 

Addition of a 
new attribute 

COLOR into 
ITEM in Sales DB 

- addition of a new satellite  
- possibly consolidate old and 
new satellite 

- addition of a new satellite  
- possibly consolidate old 
and new satellite 

- addition of a new record into 
ATTRIBUTE hub  
- addition of a new record into 
ATTR-DOMAIN, ATTR-
SATELLITE, ATTR-RULE and 
ATTR-RULE-MV link 
- addition of a new record into 
ATT_DEF satellite 

Modification of 
an existing 
attribute 

PRICE domain in 
ITEM into 
DECIMAL  
or  
PRICE into 
UNIT_PRICE 
in Sales DB  
 

- addition of a new ITEM hub 
satellite 

- addition of a new 
PRODUCT_MASTER 
satellite 

- addition of a new record into 
ATTR-DOMAIN link 
- addition of a new record into 
SATELLITE and ATTRIBUTE hub 
- addition of a new record into 
RULE_DEF and CODE satellite 

Deletion of an 
existing 
attribute 

DESCRIPTION 
in ITEM in Sales 
DB 

- no action, no deletions, 
updates only 
- addition of a new validity 
satellite on a ITEM hub 

- no action, no deletions, 
updates only 
- addition of a new validity 
satellite on a 
PRODUCT_MASTER hub 

- addition of a new record into 
ATT_DEF with validity data 
- addition of a new record into 
RULE_DEF and CODE satellite 

Addition of a 
new 
relationship 

BRANCH-
CUSTOMER 

- addition of a new link (simple 
extension of the model) 
 

- addition of a new link 
(simple extension of the 
model) 
 

- addition of new records in the LINK 
hub, LNK_DEF satellite and LINK-
HUB-ROLE link 
- addition of a new record into 
RULE_DEF and CODE satellite 

Deletion of an 
existing 
relationship 

BRANCH-
CUSTOMER 

- addition of a new validity 
satellite on a BRANCH-
CUSTOMER link 

- addition of a new validity 
satellite on a BRANCH-
CUSTOMER link 

- addition of a new validity satellite 
on a LINK hub 
- addition of a new record into 
RULE_DEF and CODE satellite 

 



 

CONCLUSIONS 
 
The DW environment is in a constant change (nowadays more than ever), but the DW evolution process is still quite 
complex, error prone and requires a lot of time and resources. In this paper we conducted a brief analysis of the 
previous DW schema evolution research and presented a detailed description of the proposed idea for the further 
research. Through the analysis of the related literature, we noticed the lack of broader, general approaches for 
solving more of the DW schema evolution problems together, as well as the lack of metadata repository 
standardization for the support of the DW schema evolution. Considering that, we will try to tackle the DW schema 
evolution problems on a more general, meta-oriented level. We will approach the DW evolution problem from the 
usual data warehouse perspective, but also from the master data management (MDM) perspective. The problem of 
schema evolution after the changes in the data sources or user requirements is present in both of these systems and 
we believe they should be dealt with together, on the same level.  The research idea described in the paper includes 
creation of a dual solution - an integrated DW and MDM data repository, which is primarily intended for structured 
data sources and realizations with relational database engines. The DW and the MDM will be integrated through the 
standardized and historicized metadata repository (MDV), that will be based on a Data Vault modeling approach. 
We believe standardized and historicized metadata repository is the key of solving the DW and the MDM schema 
evolution problem, together with the usage of the Data Vault (DV) modeling approach. The DV modeling approach, 
because it highlights the need for tracking the origin of data and history of changes, is more convenient to provide 
simple and effective support for the historical DW schema evolution than the relational modeling approach. A MDV 
can in this context be observed as a DW on a DW, and it will serve to integrate raw data oriented DW with a 
business and master data oriented MDM. Our dual solution will aim to solve many of the DW evolution problems 
mentioned in the paper (such as a slow and costly migration and transformation, loss of information, a lack of a 
mechanism for monitoring data source model evolution, user requirements evolution and data security evolution, a 
lack of effective integration, organization and management of metadata, etc.) together, at a higher, meta level.  
By integrating the DW with the MDM through the MDV, our proposed dual solution would support simpler and 
faster DW/MDM evolution and it would extend the lifetime of the DW, by ensuring higher level of users’ faith in 
the accuracy and validity of data used for reporting and analysis, as well as support for agile development (due to the 
modularity of the DV model). It would be able to deal with data quality issues across all master data types, 
applications, and areas and will enable business organizations to maximize the value they can gain from their master 
data. Also, it would contain both a "single version of the fact" [19] and a "single version of the truth" [13] and it 
could be used as a complete system of records [13, 16, 19] with the support for the data security evolution, data 
audit and data governance (it would provide a mechanism for monitoring data and metadata quality, as well as a 
mechanism for monitoring the DW and the MDM evolution). Among directions of ongoing and future research is a 
further gathering and defining of the solution requirements, standardization and formalization of a data vault based 
metadata repository (including source, materialized view, transformation and security metadata) by incorporating 
some general ideas from [12, 14, 20, 28] and incremental development of a implementation prototype for testing the 
research hypotheses and solution.   
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