
Volume VII, No. 1, 2006 150 Issues in Information Systems

SECURE SOFTWARE DEVELOPMENT

USING USE CASES AND MISUSE CASES

Meledath Damodaran, University of Houston-Victoria, damodaranm@uhv.edu

ABSTRACT

There is a need to inculcate in students the idea of

secure system development. This paper investigates

the application of use cases to the identification of

security threats and security requirements; these can

then be incorporated into the software design and

implementation and used as a basis for testing. The

method is easy to teach and easy to use. It provides a

highly organized way of thinking about security early

in the software life cycle. It can be a tool to inculcate

secure software development among students.

Keywords: Use Cases, Misuse Cases, Security Use

Cases, Secure Software Development

INTRODUCTION

University curricula traditionally do not emphasize

security in system or software development. Courses

such as OOP&D, SA&D, and software engineering

mainly focus on building software that do something.

Yet, security and reliability, and defensive design in

general, do not happen by accident. Even software

vendors emphasize to their clients how feature-rich

the product is, with user-friendliness and convenience

thrown in as bonus. Security, reliability and

robustness are special considerations and often

clubbed together under “non-functional” features.

Software developers and architects don’t typically

think of security as a top priority in the midst of their

busy development activities. In order to meet the

security problem, businesses end up hiring the best

security professionals they can find, well after

acquiring or building the systems, as if security is

something that can be “bolted on” or “patched in”

after the fact. Even academics fail in this area

because far too many of their “products” (the

graduates) don’t think like a hacker while they build

systems. Some aren’t convinced that security “adds

value” to their end products. The result is that the

systems they end up building typically have many

vulnerabilities. A theoretical understanding of

security concepts alone does not result in a change of

behavior during system development.

But secure software development instruction need not

be such a formidable task. We believe that there is a

way to weave in elements of secure and defensive

systems development in several classes throughout

the academic curriculum. We will suggest one

method of doing that in this article.

The outline of the rest of this paper is as follows.

After briefly explaining the concept of misuse cases,

we outline a method for building a misuse-case based

threat and security requirements model. Next, we

discuss the potential benefits of this method and also

point out a few of its drawbacks. The results of a

classroom experience introducing this method to the

information systems students in one of our classes is

presented in the next to the last section. We close

with some conclusions.

USE CASES AND MISUSE CASES

Use Cases

Use cases [4] are very effective in capturing users’

and other stakeholders’ functional requirements. A

use case represents one or more actors interacting

with the system in order to get a job done. The use

case model of the functional requirements of the

system consists of a well-organized collection of use

cases representing the details of system interaction

from the perspectives of the representatives of the

different user groups. Each use case typically

represents how one user would be interacting with

the system. The use case model consists of a use case

diagram and the description of each use case using a

template. The use case description typically includes

a normal scenario (or flow) and one or more alternate

scenarios (or flows.) Each scenario is in the form of a

sequence of events between the actor and the system.

Use cases are very popular in requirements gathering

and specification. It is an important part of modern

development methodologies such as Rational Unified

Process (RUP.) Their benefits have been well-

documented. They are used in software development

as well as system engineering/development life

cycles [3].

Misuse Cases

Misuse cases [1, 7, 2, 5] represent threats: the

multitudinous ways in which an attacker interacts

with the system to thwart, break into, damage, abuse,

https://doi.org/10.48009/1_iis_2006_150-154

Secure Software Development Using Use Cases and Misuse Cases

Volume VII, No. 1, 2006 151 Issues in Information Systems

or misuse the system. A misuse case is a use case

from the point of view of an actor hostile to the

system under design [7]. The goal of a misuse case is

not system functionality per se, but a threat posed by

a hostile actor to the system functionality represented

by the use cases. Secondarily, misuse cases also

represent user errors and omissions, accidental or

careless. An example will illustrate their use [7]:

Figure 1. Example of a Use and Misuse Cases

The left column of ovals denote use cases, and they

represent the functional features of the system. The

black ovals denote misuse cases and represent

security hazards. The middle column and bottom left

and bottom right ovals denote “security use cases”;

these are generated to thwart the threats that the

misuse cases represent. We will discuss security use

cases in more detail below.

Sindre and Opdahl [7, 8] give detailed examples of

how the scenarios in which such 'negative' agents

attempt to defeat the system under design can be

elicited as misuse cases.

A METHOD FOR BUILDING A SECURITY

REQUIREMENTS MODEL

Determination of security requirements traditionally

starts with, and is based on, an analysis of the assets

to be protected, followed by a risk modeling and risk

analysis exercise. An overall security plan guides

these activities. Various other methods are also

utilized for identifying security requirements. The

method suggested in this paper should not be thought

of as replacing any of these methods, but instead

complementing them. Yet, regarding the traditional

emphasis in asset-based risk analysis, it should be

noted that although it tends to do a very good job of

identifying the threats against the assets, a dimension

it omits is the services and features that need to be

protected. Misuse case based threat identification

directly addresses this omission. Hence, they fill in

where the traditional methods are weak.

We suggest a method for building threats and

security requirements from use cases and misuse

cases:

1. First identify actors (representing user classes)

and build a comprehensive set of use cases as

usual.

2. For each use case, brainstorm and identify how

'negative' agents would attempt to defeat its

purpose or thwart some of the steps in the use

case description; this leads to the major misuse

cases. During the brainstorm sessions the focus

should be to identify as many ways an attacker

could cause harm in the service provided by the

use case in focus; details of such attacks may be

determined later. Each of these modes of attacks

becomes a candidate misuse case. The goal is to

identify security threats against each of the

functions, areas, processes, data, and transactions

involved in the use case from different potential

risks such as unauthorized access from within

and without, denial of service attacks, privacy

violations, confidentiality and integrity

violations, and malicious hacking attacks. In

addition to modes of attacks, the process should

also try to uncover possible user mistakes and

the system responses to them. Often these

mistakes could cause serious issues in the

functioning or security of the system. By

identifying all inappropriate actions that could be

taken, we would capture all actions of abnormal

system use—by genuine users in terms of

accidental or careless mistakes and by attackers

trying to break or harm the system function.

3. Show the relationships between each use case

and the corresponding misuse cases in a diagram

such as Figure 1. Use of words such as

“threatens” and “steals” would be found useful to

show these relationships as portrayed in Fig. 1.

4. After the misuse cases have been constructed,

identify security use cases to counter or thwart

the intended purpose of each misuse case. A

simple example is one in which we would

construct a new security use case called “Encrypt

the Message” to thwart the “Tap

Communication” misuse case (see Figure 1.)

Note that we called these new use cases “security

use cases,” as they do not represent functional

requirements of the system per se (no user or

Secure Software Development Using Use Cases and Misuse Cases

Volume VII, No. 1, 2006 152 Issues in Information Systems

stakeholder probably ever asked for encryption,

for example.)

5. Continue steps (2) through (4) for each major use

case until one is satisfied that (a) all reasonable

threats to the basic functionality and services of

the system (as represented by the use case

model) are identified and represented as misuse

cases and (b) each of these threats has been

thwarted by one or more newly introduced

“security use cases.”

Microsoft’s new threat modeling method gives

several useful guidelines for identifying threats along

use cases [6].

A short example, provided by my student

Chandramohan Muniraman, will illustrate the

method. Consider the system function of providing

access to users of the system. Suppose that users

access a login form, enter their account name and

password, and request access to the system. The

system verifies their credentials, authenticates them,

and provides them access by way of a form with

options for performing further actions. So this

essentially is the use case for this function—

specifying a business or system requirement.

The misuse cases in this case are what an attacker

would be doing with this function of the system.

They may try to (1) gain unauthorized access to the

system by password guessing, (2) intercept the

communication messages and find out the account

details, (3) flood the system with access requests and

cause denial of service attack. These become the

misuse cases for this normal system function.

The next step is to prevent these misuses of the

system by identifying security features, in the form of

security use cases, to protect the system from the

above threats. These may include the following: (1)

System should lock the account after a few

unsuccessful attempts and provide some easy and

safe means of resetting the password for the actual

account user; (2) Encrypt messages during transit; (3)

A stateful inspection of some kind should detect

repeated requests from a source system or user and

prevent them or hold off actual connection until

further responses could be verified from the

requestor.

DISCUSSION

The discussion will mainly focus on the major

benefits and shortcomings of the suggested method as

the basis for identifying threats and more generally as

the basis for secure software development. As far as

benefits are concerned, we see many. First and

foremost, the use case method is one of the most

popular methods for eliciting requirements. It is a

central part of the Unified Process and UML, for

example. Since use cases are developed anyway as

part of the system development artifacts, it makes

sense to use them as a means of discovering a major

portion of the security requirements. As mentioned

before, other traditional and important approaches

such as asset-and-risk based methods should continue

to be used. Microsoft’s newly released threat model

[6] describes several such complementing

approaches.

A claim may be made that information about most, if

not all, security-related requirements is hidden in the

use cases, as use cases capture all user-based system

functionality. If that is so, a complete and

comprehensive use case document should give us an

excellent starting point to derive most of, if not all,

the security requirements.

Use cases can be used as a basis for much of the

testing. Similarly, security oriented requirements may

be used as the basis of security-oriented testing. It

should be noted that security oriented testing such as

risk-based testing and extensive penetration testing is

often omitted due to cost and schedule constraints in

many development projects.

We believe that it is easy to teach this method to a

novice developer or a student— those without much

background in security or experience in development.

For example, it should not be too difficult for a

novice to ask the following for each use case: What

are the different ways to (a) abuse this? (b) make this

use case not work? or (c) have something go wrong

in the flow of events in the normal or alternate flows

that constitute the use case description?

The approach, though simple, provides us with a

methodical handling, modeling, and specification of

functional and adversarial usage, rather than the

haphazard approach that is common place in many

security threat identification exercises.

Threat modeling is gaining momentum. For example,

Microsoft offers free threat modeling tools and

resources, and a new portal "Threats and

Countermeasures" has just been launched. There is an

elevated level of concern for this activity in all

industries and university programs in computing. But

threat modeling is often thought of as an abstract and

difficult concept. Techniques such as the use-case

based threat modeling described here, along with

traditional asset-and-risk based methods make it

Secure Software Development Using Use Cases and Misuse Cases

Volume VII, No. 1, 2006 153 Issues in Information Systems

possible for anyone to do a secure system design

reasonably well.

As already mentioned, university computing and

information systems programs have a difficult time

adequately teaching security as a topic in an already

overcrowded curriculum. There are far too many

topics to be covered in programming and system

development classes, and even courses such as

operating systems and database find it difficult to

adequately cover computer and information security.

Yet, covering misuse cases right after doing use cases

in a software engineering or SA&D class is a

practical and natural way to introduce security and

inculcate security-thinking in students. Inclusion of

security requirements in the SRS document may be

made a mandatory requirement in student projects.

These efforts take very little additional class time,

and the benefits in the students’ becoming security-

conscious are certainly worth that extra time. The

topic may be covered in a beginning OOP&D class as

well, with the result that from the very beginning

students have a “security” frame of mind.

There are a few potential problems or limitations

with this method for eliciting security requirements.

The first is that one should not rely on only this

method, but use other conventional methods of

eliciting security requirements also. Examples

include data oriented methods, identifying threats

along data flows, Threat/Attack Trees [6], identifying

threats and attacks unique to the application domain

(such as web application,) and the commonly used

asset-and-risk based methods already mentioned.

Another possible criticism could be that secure

software development is much more than

constructing a set of misuse cases along with a set of

security requirements to counter the threats that they

model and incorporating them in the design,

implementation and testing of the system and its

artifacts. Secure software development and secure

programming involves understanding and managing

software-induced security risks, language-based

flaws and pitfalls, and subjecting all security related

artifacts to thorough objective risk analyses and

testing [5.] Secure software development involves

knowledge of coding errors and how to avoid them,

formal risk analysis, penetration testing, and code

reviews, among other topics. The method outlined in

this paper does very little in these important areas.

Yet another shortcoming of the method is that there

are no standards, guidelines or generally accepted

practices on what constitutes a good, quality set of

misuse cases, or use cases, for that matter. People

develop vastly different types of use cases, some high

level and some with lots of detail, for example.

Use/misuse cases are not formal techniques. The

subject is very new, and there is not a vast body of

literature documenting successful applications of this

method in real world settings.

A CLASS EXPERIMENT

“Information System Security” is a beginning level

graduate class in the Master’s program in Computer

Information Systems at University of Houston-

Victoria. The author taught this course in the spring

of 2006 as a fully online class. “Secure software

development” is the last topic listed in the class

schedule. This topic is not covered in the textbook.

Most students were not familiar with use cases. Even

though software engineering project management and

SA&D are core courses, they are not prerequisites for

this class.

An assignment was given about two-thirds into the

semester with the objective of introducing them to (1)

some of the material on secure software development

and (2) a hands-on experience in developing security

requirements using the method outlined in this paper.

The assignment required them to complete 3 steps:

(1) Go through a PowerPoint presentation on use-

case based requirements gathering. The presentation

included the example of the development of the use

case model of a customer’s shopping experience on

Ebay. (2) Read the original version of this paper. (3)

For the Ebay example introduced in the use case

presentation, develop a comprehensive set of misuse

cases; security use cases (in response to the misuse

cases;) a diagram showing the use/misuse/security

use cases, relationships among them, and the actors

involved; and a description of each of the misuse

cases and security use cases using a template.

Space limitations do not allow us to go into the

details, but the results met this instructor’s

expectations. Of the twelve students left in the class

when this assignment was given, five mastered the

method described in this paper, applied it to the Ebay

problem, and developed a comprehensive set of

security requirements as per the instructions. Two

students showed their understanding of the material

but for some reason gave only one misuse case and

one security use case each (instead of a

comprehensive set of these, as was asked.) Two of

the students showed partial understanding of what

they had read and were not able to apply it at all.

One, a normally bright student, did not understand

what was required to be delivered, and did not seek

help from me, probably due to his very late start!

Secure Software Development Using Use Cases and Misuse Cases

Volume VII, No. 1, 2006 154 Issues in Information Systems

Finally, three students either did not attempt the

assignment at all, or did not make enough progress

on it to submit anything.

I feel that this was a somewhat unorthodox

assignment for these students. There was a perception

that much was expected of them in this assignment:

studying use case based development and security

requirements using misuse cases and security use

cases. In hind sight, this may have caused a few

students to probably feel intimidated at the outset and

give up. Nevertheless, three students appeared to

really like the assignment, and a majority of them did

master the technique to a degree they could apply it.

Lastly, the results may have been different if the class

were a face-to-face offering and not an online one.

CONCLUSION

Misuse cases appear to be a very effective tool for

identifying the security threats corresponding to the

functional requirements of the system as represented

in the use case model. They form the basis for

constructing a set of “security use cases” that counter

each of the threats. The step-by-step method

described here is easy to teach and appears easy to

use. It provides a highly organized way of thinking

about system and software security. Until the

implementation of use/misuse cases, security for

many of the students and practitioners may have been

more or less an abstract concept. With misuse cases,

they have a practical technique to identify and

include in the design a set of security threats and a set

of remedies for these security threats. The experience

of using such a method can help inculcate secure

software development in students. For them and for

their future employers, security is bound to remain a

matter of serious concern.

For widespread industry-wide applicability of this

method for security requirements elicitation and

specification, the method would need to be

incorporated into existing CASE tools. Also, there

should be standards and guidelines for their use.

When software developers and IT managers start to

realize the benefits and cost-effectiveness of this

relatively simple method, or methods such as this, we

expect the frequency of their use to increase.

ACKNOWLEDGEMENT

My thanks are due to my student, Mr. Chandramohan

Muniraman, for permission to include his example in

this paper.

REFERENCES

1. Alexander, I.F. (2003). Misuse Cases: Use Cases

with Hostile Intent, IEEE Software, January, 58-

66

2. Firesmith, D. (May-June 2003). Security Use

Cases, Journal of Object Technology, 2(3), 53-

64. Available:

http://www.jot.fm/issues/issue_2003_05/column

6

3. Hruschka, P. & Rupp, C. (2001). Echt Zeit' für

Use-Cases (German), OBJEKTSpektrum, 4, 63-

70.

4. Jacobson et al (1992). Object Oriented Software

Engineering – A Use Case Driven Approach.

Boston, MA: Addison-Wesley.

5. McGraw, G. (2006). Software Security: Building

Security In, Boston, MA: Pearson Education

6. Meier, J.D., Mackman, A., & Wastell, B. (2005).

How To Create a Threat Model for a Web

Application at Design Time, Microsoft Corp.

Technical Report

http://msdn.microsoft.com/library/default.asp?url

=/library/en-us/dnpag2/html/tmwahowto.asp

7. Sindre, G., & Opdahl, A.L. (2000). Eliciting

Security Requirements by Misuse Cases,

Proceedings of TOOLS Pacific, 20-23

November, 120-131

8. Sindre, G., & Opdahl, A.L. (2001). Templates

for Misuse case Description, Proceedings of the

7th International Workshop on Requirements

Engineering, Foundation for Software Quality,

Interlaken, Switzerland, 4-5 June

