
Volume VIII, No. 2, 2007 273 Issues in Information Systems

METACOGNITION AND SOFTWARE DEVELOPER COMPETENCY: CONSTRUCT
DEVELOPMENT AND EMPIRICAL VALIDATION

Paul J. Ambrose, University of Wisconsin - Whitewater, ambrosep@uww.edu

ABSTRACT

Software developer competence is essential for
developing quality systems. Typically past
experience, education and training, academic and
professional references, tests, and interviews are
used to assess developer competence. In this paper
we propose that to obtain a holistic assessment of
competence, it is essential to evaluate developer
perceptions and beliefs on what they can achieve
since these beliefs can impact their performance,
independent of the skills possessed. Using social
cognitive theory, we propose and develop a measure
of developer self-efficacy, a metacognitive factor, to
assess a critical facet of developer competence. We
also empirically validate our self-efficacy measure
through an experiment, and discuss the results of the
findings.

Keywords: Self-efficacy, Self-awareness, Social
Cognitive Theory, Programmer Competency, Partial
Least Squares.

INTRODUCTION

Software development is a complex socio-technical
undertaking and its success depends on four key
factors – the development process, the technologies
used, the people involved in its development and use,
and realistic time and cost estimates [18, 21].
Software is an essential component of information
systems (IS) and IS success is hence dependent on
quality software [11, 12]. Research, systematic
implementation of the best of the breed development
practices, adoption of total quality management
principles, and sophisticated technology have helped
improve the quality of software developed over the
past two decades [20]. However, IS continue to fail
both pre- and post- implementation on account of
software quality issues [1].

Software quality is two dimensional consisting of
software process and product qualities, with process
quality being the antecedent of product quality [20].
Substantial effort on enhancing process quality has
been expended on improving requirements gathering,
and analysis. From a research standpoint the
implementation phase of the development process
has received less attention, particularly from a

behavioral perspective. Software is coded and tested
during the implementation phase, and the quality of
the product to emerge from the implementation phase
is dependent on the quality of the code written and
tested. However, even with sophisticated CASE
tools, coding and testing are programming intensive
activities, and hence software quality will depend on
the programmers’ competenciesi [18].

Traditional measures of programmers’ competencies
include experience, and professional references for
experienced programmers; training, transcripts, and
academic references for novice programmers;
professional certifications; and written, oral, and
other demonstrative assessments during job
interviews [2, 23]. While these measures serve as
important indicators of an individual’s competency,
they do not however provide a holistic view of the
required competency. To obtain a more complete
depiction of competency, it is imperative to include
an individual’s metacognitive factors such as his/her
thoughts, understanding, emotions, and intentions.
Metacognitive factors influence behavior, and even
among individuals with the same skill set, these
factors can produce diverse behavioral patterns with
differential performance outcomes. IS research
however, has not addressed the measurement of
metacognitive factors of a programmer that can
influence behavior and performance.

This research addresses the measurement of
programmers’ cognitive competencies. Specifically,
this research focuses on self-efficacy, a key
metacognitive factor shown to impact behavior in
other literature streams. While the unit of analysis is
the programmer as the primary software developer,
the concepts developed can be extended to other
members of the development team as well. To
provide focus to the research, the following explicit
research questions are considered in this paper.

1. How can we evaluate a programmer’s
competency from a metacognitve perspective?
Using social cognitive theory (SCT), we present
self-efficacy as a measure of competency.

2. How can we establish the validity of the
metacognitve measure of competency? We

https://doi.org/10.48009/2_iis_2007_273-279

Metacognition and software developer competency:
Construct development and empirical validation

Volume VIII, No. 2, 2007 274 Issues in Information Systems

establish a theoretical framework using SCT to
test the validity of the competency construct.

3. What is the empirical evidence for the validity of
this measure of competency? We undertake an
experiment to establish empirical evidence for
the construct.

The rest of the paper proceeds as follows. The next
section theoretically develops and operationalizes
programmers’ self-efficacy (PSE) as a measure of
programmers’ competency. This section also
provides the necessary theoretical background to
establish the validity of the PSE construct. The
section following presents the empirical study and its
results. The paper concludes with a discussion, and
directions for future research.

THEORETICAL DEVELOPMENT OF PSE

Social Cognitive Theory and IS Research

Bandura [3, 4] proposed social cognitive theory
(SCT), whose essential premise is the existence of a
dynamic interplay among an individual’s cognitive
(i.e., thoughts), affective (i.e., emotions), conative
(i.e., intentions) factors, behavior or actions, and
environment as shown in Figure 1. The social
cognitive theory, originating in the field of social
psychology, is well established as a popular theory to
explicate human action, particularly to investigate
how an individual’s cognitive framework can guide
behavior [26].

Environment Behavior
or Action

Cognitive
Affective
Conative
Factors

Figure 1: Bandura’s SCT Theory

Specifically, SCT posits that an individual’s belief
structures, such as self-efficacy can guide behavior
independent of the actual skills an individual
possesses [4, 8]. Self-efficacy is defined by Bandura
[4] as “people’s judgments of their capabilities to
organize and execute courses of action required to
attain designated types of performance. It is
concerned not with the skills one has but with

judgments of what one can do with whatever skills
one possesses”. Individuals who display low self-
efficacy have been shown to exhibit behavior that
inhibits high levels of performance that they are
capable of given the skills they possess [8, 9]. On the
other hand, individuals with high levels of self-
efficacy regarding a task or activity generally are able
to produce high levels of performance [8, 9]. The
impact of self-efficacy on behavior and consequently
on performance has been empirically proven in many
diverse knowledge domains [16].

Seminal work on self-efficacy in the field of IS can
be traced to Compeau and Higgins [7], who adapted
the self-efficacy construct to measure individuals’
judgments on their ability to use computers to assist
their job related tasks. Compeau and Higgins [7]
termed their adapted self-efficacy construct as
computer self-efficacy (CSE). CSE is defined as
individuals’ beliefs about their abilities to
competently use computers across multiple domains.
CSE was hence conceptualized per Bandura’s
original definition, but was adapted to the IS context.
CSE was operationalized, measured, and validated in
a computer usage context by extending the measures
for self-efficacy developed in social cognitive theory
[7, 9].

Since Compeau and Higgins’ [7, 9] adaptation of
self-efficacy as CSE, it has been widely employed in
IS research and has been used to evaluate user
competence to use technology [e.g. see 15, 16, 19,
24, 25 for studies and detailed literature review on
CSE research]. CSE is now firmly entrenched in IS
research as a measure of end-user competency
regarding computer usage [25, 26]. IS usage models
and even the overarching IS success models now
incorporate CSE as a construct of interest [26].
Further, other allied constructs from the SCT that are
proximate determinants or consequents of CSE such
as past performance, social persuasion, vicarious
learning, outcome expectations, affect, and anxiety
have been used in conjunction with CSE to estimate
and validate user competency with respect to
Information Systems/Information Technology
(IS/IT), and even IS usage and success [16, 25].
However, self-efficacy has been limited to examining
CSE in an end-user context and has not been widely
used to investigate other behavioral interests that
exist in the field of IS.

SCT continues to evolve in the field of social
psychology, particularly into the realm of
metacognition, which refers to an individual’s
process of thinking about thinking [13]. Zimmerman
and Schunk [28], expanded Bandura’s social

Metacognition and software developer competency:
Construct development and empirical validation

Volume VIII, No. 2, 2007 275 Issues in Information Systems

cognitive theory to identify eight dimensions of
metacognition: self-efficacy, self-awareness, self-
monitoring, self-motivation, goal, resourcefulness,
choice, setting, and attribution. Zimmerman and
Schunk [28] posit that self-efficacy can positively
influence self-awareness (self-assessment of
knowledge), and emphasize the importance of this
linkage in understanding the impact of individual
self-efficacy beliefs on behavior and performance.
Strong self-efficacy beliefs can motivate individuals
to participate in training and learning experiences,
which consequently increase their awareness of what
they know and do not know. High levels of self-
efficacy can thus lead to an accurate estimation of
one’s self-awareness [13].

Conceptualizing PSE

This research is guided by the tenets of SCT. We
propose that assessing a programmer’s job related
competencies from merely observing behavior, or
through skills assessment as discussed in the
introduction will not produce a complete profile of
the individual’s competency for a programming job.
An individual’s cognitive, affective, and conative
factors can deter or enhance a required job related
behavior, and this can be independent of the skill set
the individual possesses. Empirical tests of SCT
across diverse domains have shown that self-efficacy
measurements can indicate an individual’s
competency [16]. Further, an understanding of an
individual’s self-efficacy beliefs can provide
intervention opportunities such as encouragement,
training, or even persuasion to change if the belief
levels are low. It can also help identify high achievers
and channel their competencies to enhance
productivity.

Hence we propose the measurement of the self-
efficacy of a programmer with respect to his/her
programming task as another key measure of
competency. Similar to the CSE research stream in
IS, we adapt self-efficacy from SCT to introduce
programmer’s self-efficacy, and define programmer’s
self-efficacy or PSE as the extent of individual
programmers’ beliefs about their abilities to
competently use a programming technique across
multiple problem domains.

Establishing the Validity of PSE

The development and validation of the PSE construct
were done along the lines suggested by Churchill,
and Sethi and King [6, 22]. The first step of
construct development involves specifying its domain
and definition. This was done in the earlier section

where we conceptualized and defined PSE. Second,
the construct needs to be operationalized by
developing its measures. The recommended practice
is to survey existing literature for items that have
been previously used for the construct and adopt
these measures after adjusting for context. Self-
efficacy measures are well established, and we
adapted the 9 commonly used measures of CSE after
adjusting the measure for the programming domain.
The PSE measures are shown in Table 1. The third
requirement is the establishment of the face validity
of the measures, and this was done by validating the
measures with two experts. Fourth, the validity of the
construct needs to be ascertained, to ensure it
measures what it is supposed to measure. We chose
to examine validity by testing PSE empirically for its
predictive validity.

Table 1: PSE and Self-awareness measures

Programmers’ Self-Efficacy Measures
10-point scale anchored at ‘Not at all Confident’
and ‘Totally Confident’

I could complete a programming task using
object-oriented programming technique :

1. if there was no one around to tell me what to

do as I program.
2. if I had only programming texts for

reference.
3. if I had seen someone else do it before

trying it myself.
4. if I could call someone for help if I got

stuck.
5. if someone else helped me get started.
6. if I had a lot of time to complete the job.
7. if I had just the Visual Studio built-in help

facility for assistance.
8. if someone showed me how to do it first.
9. if I had just the Internet for assistance.

Self-Awareness Measure
7-point scale anchored at ‘Very limited
knowledge’ and ‘Complete Knowledge’

1. How thorough is your current knowledge of
the object-oriented programming technique?

Testing for predictive validity first requires a
theoretically identified dependent construct for PSE.
Then if it can be empirically established that PSE is a
valid predictor of this dependent construct, then the
predictive validity of PSE is established. We use self-
awareness, or self-assessment of knowledge
identified earlier as the dependent construct for our
validation. Self-awareness is defined as the extent of
knowledge possessed by individual programmers on
a programming technique, self reported by the

Metacognition and software developer competency:
Construct development and empirical validation

Volume VIII, No. 2, 2007 276 Issues in Information Systems

individuals. Again this construct was adapted to the
programming domain, and its single item measure
modified from the CSE literature stream. The
relationship between self-efficacy and self-awareness
is shown in Figure 2. The empirical validation of PSE
is discussed in the next section.

EMPIRICAL VALIDATION OF PSE

Research Design and Data Collection

The empirical validation was done through an
experiment. 60 seniors enrolled in an undergraduate
MIS course on objected oriented systems
development using C++ voluntarily participated in
the study. All students had completed courses in C++
and Visual Basic prior to enrolling in this class. This
experiment was conducted towards the end of the
semester when the students had a greater depth of
understanding of object-oriented programming using
C++. The mean age of the participants was 25.9
years, and 22 were female and 38 were male. The
participants were graduating that semester, or the
following, and hence closely resembled entry level or
novice programmers in organizations.

The student programmers were required to write a
game of chance involving a deck of card. The
program should generate, shuffle, and deal a deck of
cards. The game is played by placing a bet that a
player guessed card will be among the top 10 cards of
a shuffled deck. The game ends if the player chooses
to walk away with money earned, or if all money is
lost. The appropriateness of the programming task
and the program requirements specification sheet
were validated with the two experts who had
validated our measurement items. The measurement
instrument containing PSE and self-awareness
measures were administered upon completion of the
programming task.

Data Analysis and Results

Data collected were examined for missing,
implausible, and coding errors, and for departures
from normality prior to formal analysis. No
discrepancies were found. Next, the multi-item PSE
construct was tested for reliability and
unidimensionality. Cronbach’s alpha measure of
reliability of PSE was 0.74, and above the minimum
requirement of 0.70 [10]. A principle components
analysis (PCA) of PSE measures indicated a single
factor structure with high factor loadings, indicating
the unidimensionality of PSE [14].

Further, convergent validity, which establishes that a
single construct underlies a set of measurement
items, was established by analyzing the measurement
model using EQS 6.1 as follows. First, the degree of
association between PSE and its measurement items
were ascertained to be significant. Second, composite
reliability [27] was computed from standardized
factor loadings and was found to be greater than 0.70.
Finally, average variance extracted by PSE computed
using standardized factor loadings was greater than
0.50 indicating that variance captured by PSE was
greater than that attributable to error. The results are
summarized in Table 2.

Table 2: Measurement Model Properties

Unidimensionality & Reliability
Factor

Loadings
(Range)

Eigen
Values

Variance
Extracted

Cronbach’s
Alpha

0.736-
0.918

6.31 70.5% 0.74

Convergent Validity
Factor

Loadings
t Values

Composite
Reliabilities

Average
Variance
Extracted

4.66-6.51 0.94 65.6%

Programmer’s
Self-Efficacy

Self-
awareness

R2 19.5%

0.48***

*** significance level 0.01

 Figure 2: Research Model for PSE Validation

The structural model was analyzed using partial least
squares (PLS), a second generation variance based
structural equation modeling technique typically used
for theory building [5]. The bootstrapping technique
with 30 bootstrap samples was used to estimate the
significance of all model parameters. PSE was
modeled as a reflective construct as specified by
theory. PLS analysis indicated a strong significant
relationship between PSE and self-awareness in the
theoretically proposed direction. In addition, the R2,
which indicates the variance of self-awareness
explained by PSE, was 19.5%. This is acceptable
given that there can be other predictors of self-
awareness too. The results are summarized in Figure
2. The PLS analysis indicates the predictive validity
of the PSE construct.

Metacognition and software developer competency:
Construct development and empirical validation

Volume VIII, No. 2, 2007 277 Issues in Information Systems

DISCUSSION AND CONCLUSION

We argued for a holistic measure for assessing a
programmer’s competency by including self-efficacy,
a metacognitive measure of competency. Using social
cognitive theory developed in social psychology
research, and its extensions in IS literature, we
conceptually developed the PSE construct. We
operationalized the PSE construct, and also
empirically validated the construct using a
theoretically substantiated predictive validity
framework. We provide additional insights into the
use of this construct.

Marcolin et at [17] argue that a portfolio of measures
be developed for CSE or end-user computer
competency. Their portfolio calls for measures to be
developed from 1) different measurement
perspectives (e.g. self-reported, pen-and-paper), 2)
across multiple contexts within the problem domain,
and 3) across cognitive, affective, and skills factors.
We had two measurement perspectives, self-reported
covering self-efficacy and self-awareness, and a
variation of pen-and-paper, which is the actual work
produced by the participants of the experiment.
However, we did not include the pen-and-paper
version of the measurement in our research as this
research is focused specifically on developing a
metacognitive measure of programmer’s competence.
Also, for scope reasons we did not test our PSE
construct across multiple contexts, but defer that
exercise to future research. With self-efficacy beliefs
consistently emerging as a strong predictor of
behavior we restrict our cognitive competency
measure to this factor.

So how can we use the knowledge of an individual’s
PSE beliefs to enhance software quality? The
immediate response may be to hire only programmers
with high PSE beliefs. However, we contend that this
may not be the correct approach, but instead this
should be use in conjunction with the actual skills
possessed by a programmer. Individuals with good
programming skills are not easily available, but if
their self-efficacy levels are low, then the quality of
software developed by these programmers can be
compromised. But if the self-efficacy beliefs can be
enhanced particularly for skilled programmers, then
their job related actions and behaviors can enhance
the quality of software produced. Social cognitive
theory provides key self-efficacy antecedents, and we
discuss these now, and suggest that they be managed
to enhance self-efficacy beliefs.

Among several antecedents of self-efficacy identified
in SCT, verbal persuasion (by a credible

mentor/teacher), vicarious learning (social
comparison by observing someone performing
similar tasks), enactive mastery (prior success or
failure), emotional arousal (e.g. fear, distress)
degree/quality of feedback, and perceived effort can
all enhance or decrease self-efficacy beliefs. [16].

Enactive mastery, where prior good/bad experience
or performance can enhance/diminish self-efficacy
beliefs of individuals is a key antecedent of self-
efficacy [8]. In cases where a skilled programmer’s
self-efficacy beliefs are low on account of some past
failure, it will be prudent to retrain or reequip the
programmer with the necessary technical and
behavioral skill set to increase self-efficacy. Also,
constructive feedback can help the programmer
regain lost self-efficacy beliefs, as the degree and
quality of feedback are key antecedents of self-
efficacy.

Further, belief and attitudinal changes can be brought
about through social or verbal persuasions by peers
or superiors whose opinions are well respected [8].
Such individuals can help programmers with low
self-efficacy to change their belief structures.
Interventions through such respected individuals or
even social groups can hence have positive
performance related outcomes through positive self-
efficacy beliefs. Such verbal influences can also help
surmount perceived effort barrier, particularly when
the perceived effort is greater than the actual effort it
takes to do the task.

Individuals are good mimics of their social peers. The
thought that “I can do anything, she can do” is the
underlying principle behind vicarious learning. As a
result, if an individual sees a peer succeed at a
particular task, his/her self efficacy will rise, and a
peer’s failure can reduce self-efficacy [8].
Programmers with low self-efficacy beliefs can be
embedded with highly successful programmers to
raise their perceptions of their self-efficacy. Also, it
is useful to maintain work environments with
individuals who are successful, so as to empower
everyone with a belief that he/she can do the task as
well those who are successful.

Finally, emotional arousal refers to psychological
factors that can inhibit performance. For e.g., fear of
speaking, or butterflies in the stomach can be a
stumbling block even to a speaker who has great
thoughts. Similar fear exists among individuals with
respect to their task. Fear of learning a new tool or
reorienting to a new programming environment can
hinder programmers. Such emotional factors need to

Metacognition and software developer competency:
Construct development and empirical validation

Volume VIII, No. 2, 2007 278 Issues in Information Systems

be addressed through regular training and
development programs.

In conclusion, we reiterate the importance of
measuring attitudes and beliefs in addition to
observable measures of programmer’s competence.
While we developed the PSE construct specifically in
the object oriented programming context, we
recommend that further research be undertaken in
other programming contexts. Competence in other
developmental activities, such as requirements
gathering, analysis and modeling can also be
similarly assessed. Further, such a measure can be
extended to assessing competency even at the
development methodology (e.g. agile, traditional)
level. Empirical validation of the construct can also
be carried out using real world developers with
experience, moving beyond novice programmers.

REFERENCES

1. Agrawal, M. & Chari, K. (2007). Software

Effort, Quality, and Cycle Time: A Study of
CMM Level 5 Projects. IEEE Transactions on
Software Engineering, 33,(3), 145-156.

2. Arnold, D. & Niederman, F. (2001). IT The
Global Work Force. Communications of the
ACM, 44,(7), 30-33.

3. Bandura, A. (1977). Self Efficacy: Toward a
unifying theory of behavioral change.
Psychological Review, 84,(2), 191-215.

4. Bandura, A. (1986). Self Efficacy, Social
foundations for Thought and Action: A Social
Cognitive Theory, Englewood Cliffs, NJ:
Prentice-Hall.

5. Chin, W. W., Marcolin, B. L., & Newsted, P.
R. (2003). A Partial Least Squares Latent
Variable Modeling Approach for Measuring
Interaction Effects: Results from a Monte
Carlo Simulation Study and an Electronic-
Mail Emotion/Adoption Study. Information
Systems Research, 14,(2), 189-217.

6. Churchill, G. A. (1979). A Paradigm for
Developing Better Measures of Marketing
Constructs. Journal of Marketing Research,
16,(February), 64-73.

7. Compeau, D. R. & Higgins, C. A. (1991). A
Social Cognitive Theory Perspective on
Individual Reactions to Computing
Technology. Proceedings of 12th International
Conference on Information Systems, New
York, NY, ACM, 187-198.

8. Compeau, D. R. & Higgins, C. A. (1995).
Application of Social Cognitive Theory to
Training for Computer Skills. Information
Systems Research, 6,(2), 118-143.

9. Compeau, D. R. & Higgins, C. A. (1995).
Computer self-efficacy: Development of a
measure and initial test. MIS Quarterly, 19,(2),
189.

10. Cronbach, L. J., "Test Validation," in R. L.
Thorndike, ed., Educational Measurement,
Washington, DC: American Council on
Education, 1971.

11. DeLone, W. H. & McLean, E. R. (1992).
Information Systems Success: The Quest for
the Dependent Variable. Information Systems
Research, 3,(1), 60-95.

12. DeLone, W. H. & McLean, E. R. (2003). The
DeLone and McLean Model of Information
Systems Success: A Ten-Year Update. Journal
of Management Information Systems, 19,(4),
9-30.

13. Gravill, J. I., Compeau, D. R., & Marcolin, B.
L. (2006). Experience effects on the accuracy
of self-assessed user competence. Information
& Management, 43,(3), 378-394.

14. Hair, J. F., Black, W. C., Babin, B., Anderson,
R. E., & Tatham, R. L. (2005). Multivariate
data analysis, 6th ed., Upper Saddle River,
N.J.: Prentice Hall.

15. Hasan, B. (2006). Effectiveness of Computer
Training: The Role of Multilevel Computer
Self-Efficacy. Journal of Organizational &
End User Computing, 18,(1), 50-68.

16. Marakas, G. M., Yi, M. Y., & Johnson, R. D.
(1998). The Multilevel and Multifaceted
Character of Computer Self-Efficacy: Toward
Clarification of the Construct and an
Integrative Framework for Research.
Information Systems Research, 9,(2), 126-163.

17. Marcolin, B. L., Compeau, D. R., Munro, M.
C., & Huff, S. L. (2000). Assessing User
Competence: Conceptualization and
Measurement. Information Systems Research,
11,(1), 37.

18. Nerur, S. & Balijepally, V. (2007). Theoretical
Reflections on Agile Development
Methodologies. Communications of the ACM,
50,(3), 79-83.

19. Piccoli, G., Ahmad, R., & Ives, B. (2001).
Web-Based Virtual Learning Environments: A
Research Framework and a Preliminary
Assessment of Effectiveness in Basic IT Skills
Training. MIS Quarterly, 25,(4), 401-426.

20. Ravichandran, T. & Rai, A. (2000). Quality
Management in Systems Development: An
Organizational System Perspective. MIS
Quarterly, 24,(3), 381-415.

21. Ravichandran, T. & Rai, A. (2003). Structural
Analysis of the Impact of Knowledge Creation
and Knowledge Embedding on Software

Metacognition and software developer competency:
Construct development and empirical validation

Volume VIII, No. 2, 2007 279 Issues in Information Systems

Process Capability. IEEE Transactions on
Engineering Management, 50,(3), 270-284.

22. Sethi, V. & King, W. R. (1991). Construct
Measurement in Information Systems
Research: An Illustration in Strategic Systems.
Decision Sciences, 22,(3), 455-472.

23. Surakka, S. (2007). What Subjects and Skills
are Important for Software Developers?
Communications of the ACM, 50,(1), 73-78.

24. Thatcher, J. B. & Perrewe, P. L. (2002). An
Empirical Examination of Individual Traits as
Antecedents to Computer Anxiety and
Computer Self-Efficacy. MIS Quarterly,
26,(4), 381-396.

25. Thompson, R., Compeau, D., & Higgins, C.
(2006). Intentions to Use Information
Technologies: An Integrative Model. Journal
of Organizational & End User Computing,
18,(3), 25-46.

26. Venkatesh, V., Morris, M. G., Davis, G. B., &
Davis, F. D. (2003). User Acceptance of
Information Technology: Toward A Unified
View. MIS Quarterly, 27,(3), 425-478.

27. Werts, C. E., Linn, R. L., & Jöreskog, K. G.
(1974). Interclass Reliability Estimates:
Testing Structural Assumptions. Educational
Psychological Measurement, 34, 25-33.

28. Zimmerman, B. J. & Schunk, D. H. (2001).
Self-Regulated Learning and Academic
Achievement, Mahwah, New Jersey:
Lawrence Erlbaum Associates.

i The rest of the paper focuses on programmer’s
competency. While the term developers can include
programmers, it can also include individuals who
perform a variety of other development activities. To
keep our focus on the programming activity, we
measure programmer’s competence.

