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Abstract 

Generative AI assistants are permeating programming classrooms, yet little is known about whether 

students adopt sound usage habits. This study surveyed 50 undergraduates in Computer Science / 

Computer Information Systems courses to examine the frequency of 11 recommended AI-support 

behaviors, such as planning queries, verifying AI-generated output, and integrating AI with personal code. 

Substantial shortfalls were observed in critical forethought and verification steps, especially among 

students using AI for simpler tasks. In contrast, students applying AI to more complex assignments 

demonstrated stronger behaviors, although certain foundational habits remained weak across the board. 

The paper proposes five low-overhead scaffolds to help instructors close these usage gaps and improve 

AI literacy in programming education. 

Keywords: AI-assisted programming, self-regulated learning, gap analysis, prompt engineering, 

computing education. 

Introduction 

Generative AI tools like ChatGPT and GitHub Copilot have rapidly transformed programming education 

by providing code generation, algorithm explanations, and real-time assistance, which can personalize and 

accelerate learning (Lo, 2023; Sun et al., 2024). Studies show that integrating AI into programming courses 

enhances engagement and performance through instant feedback and tailored support (Zhou, 2023; Yilmaz 

et al., 2023). LLMs such as ChatGPT adapt to learners’ needs, aiding novices in debugging and 

understanding complex concepts (Kloub & Gupta, 2024; Acosta-Enriquez et al., 2024). However, easy 

access to AI does not guarantee effective learning; over-reliance may lead to superficial understanding if 

students bypass essential problem-solving (Prather et al., 2024; Alrayes & Aljohani, 2024). Students with 

more programming experience or higher self-regulation skills are better able to use AI as a support tool 

rather than a crutch, integrating AI suggestions into their own problem-solving processes (Prather et al., 

2024). 

Self-regulated learning (SRL) theory provides a robust lens for understanding effective educational tool 

use. SRL models, such as Zimmerman’s (2002) cyclical phases of forethought, performance, and self-

reflection, describe how successful learners plan their approach, monitor progress, deploy strategies, and 

reflect on outcomes. In programming, SRL might involve planning a solution, seeking relevant information, 

testing and debugging code, and reflecting on mistakes that align well with using AI assistants as learning 

aids (Prasad & Sane, 2024; Lan & Zhou, 2025). Recent research suggests that using AI effectively requires 

metacognitive skills like goal-setting, careful prompt formulation, result verification, and adaptation of 
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strategies (Knoth et al., 2024; Lan & Zhou, 2025). Students lacking these self-regulatory behaviors may 

misuse AI (e.g., mindlessly copying code) or fail to obtain its full benefits. For educators, identifying where 

student practices fall short of best practices when using AI and finding the “gaps” in students’ AI-supported 

programming behaviors is a key challenge. 

 

This study quantifies gaps between recommended and actual AI usage behaviors in programming, showing 

that novices are more likely to skip critical steps, especially with complex tasks (Mozannar et al., 2024; Al 

Haque et al., 2024). These insights can inform targeted interventions to foster metacognitive strategies and 

bridge the gap between current and best practices (Prasad & Sane, 2024; Lan & Zhou, 2025) 

 

 

Brief Literature Review and Conceptual Model 

 
AI (LLMs) in Programming Education 

Integrating AI assistants into coding education is a double-edged sword. On the one hand, AI tutors and 

code generators offer individualized, adaptive support that traditional teaching often cannot (Roll & Wylie, 

2016; Yilmaz & Yilmaz, 2023). Studies show that AI-driven tools can boost engagement and coding 

performance by providing immediate hints, explanations, and feedback (Zhou, 2023; Al Haque et al., 2024). 

LLM-based chatbots help simplify complex concepts and guide students through debugging, mainly 

benefiting novices as they overcome initial hurdles in syntax and logic (Yilmaz & Yilmaz, 2023; Bosch & 

D’Mello, 2017; Alrayes & Aljohani, 2024). 

 

However, improper use of AI can hinder learning. Students who rely on AI shortcuts may miss more 

profound understanding and critical skill development (Prather et al., 2024). Over-reliance can erode coding 

confidence, while advanced learners use AI reflectively, integrating suggestions to enhance their strategies 

(Tang et al., 2024). Since prior knowledge shapes how students interact with AI, novices need structured 

guidance to avoid passive use, while experienced learners use AI more collaboratively. Thus, the quality of 

student-AI interaction is crucial, and educators must foster effective usage behaviors to ensure learning 

benefits (Rahman & Watanobe, 2023). 

 

SRL and AI Tool Use 

Effective AI usage in programming can be conceptualized through SRL theory, which outlines three phases: 

forethought (planning and goal-setting), performance (monitoring and strategy use), and self-reflection 

(evaluating and adapting) (Newman, 1994; Zimmerman, 2002). Successful learners employ strategies in 

each phase to optimize their learning. In AI-assisted programming, these phases map onto distinct student 

behaviors advocated as best practices by experts (Naamati-Schneider & Alt, 2023; Knoth et al., 2024). For 

instance, in the forethought phase, a student should analyze the problem and set an approach before using 

AI-such as outlining requirements or reviewing known solutions rather than immediately querying the tool 

(Laupichler et al., 2022). In the performance phase, effective strategies include iterative prompting 

(rephrasing questions for clarity), verifying AI outputs through testing, and integrating AI suggestions with 

original code (Luckin et al., 2022; Microsoft, 2024). These behaviors align with AI literacy principles 

emphasizing critical evaluation and ethical use. The conceptual model proposed in this study identifies key 

behaviors, including problem planning, personal effort, interactive prompting, verification, and content 

integration, that align with AI literacy principles and are highlighted in recent research (Fenu et al., 2024). 

These practices help ensure students remain active, critical participants when using AI tools. 

 

In the proposed conceptual model, each behavior has an ideal frequency – essentially, how often a student 

should engage in it to consider the behavior well incorporated. For critical habits (like testing code or 

checking requirements), an instructor might argue that “Always” performing them is the goal. Students may 
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perform these behaviors only occasionally or not at all. We aim to quantify the gap between the ideal (e.g., 

always) and the actual frequency. This gap analysis approach has been used in educational needs 

assessments to pinpoint where performance falls short of expectations (Clark & Estes, 2008). 

 

Despite growing interest in AI tutors, research remains limited in identifying the specific self-regulatory 

practices that enhance AI tool efficacy in computing education. Few studies have quantified student 

engagement with AI along SRL dimensions or tied those behaviors to contextual factors like task 

complexity, which this study uniquely addresses. 

 

Research Questions 

While theoretical frameworks suggest what students should do with AI tools, there is little empirical data 

on what students do when left to their devices. Our study fills this gap by systematically measuring students’ 

self-reported AI usage behaviors and comparing them to an ideal benchmark from the above best practices. 

This study extends prior work by examining an often-hypothesized factor: task complexity. Intuitively, 

students working on complex programming tasks might be forced to engage in more rigorous practices 

(e.g., they must break the problem down, test extensively, etc.), or conversely, they might lean more heavily 

on the AI and skip steps due to the task’s difficulty. Recent evidence indicates that without guidance, 

students will rely on AI in unproductive ways if the course design does not scaffold its role (Darvishi et al., 

2024). By comparing high-complexity vs. low-complexity task contexts, we seek to determine whether 

certain good practices naturally emerge when challenges increase or if additional support is needed for 

students tackling more complex problems with AI. 

 

The literature suggests that the effective use of AI in programming requires self-regulation and adherence 

to specific strategies. However, students’ adherence to these strategies is uncertain and likely uneven. 

Findings from literature lead to the research questions, which guide the present study. Based on the 

foregoing discussion, we pose two research questions: 

 

• RQ1: What is the extent of the shortfall in students’ AI-supported programming practices relative 

to ideal recommended behaviors? In other words, which specific behaviors do students not 

perform frequently enough, and how large is the gap for each behavior? 

• RQ2: How do these behavioral gaps vary with task complexity? In particular, do students who 

engage with AI on complex programming tasks (>50 lines of code) exhibit significantly different 

(smaller or larger) gaps in these behaviors compared to those who use AI only on simpler tasks? 

Answering RQ1 will help identify and quantify student practices' most significant “pain points” (e.g., lack 

of planning, insufficient testing). Answering RQ2 helps to discern whether complexity is a predictor of 

better or worse behavior, which can inform whether advanced project settings naturally encourage 

improved habits or exacerbate certain poor practices. Together, these questions address the diagnosis of 

current behavior gaps, and the prediction of those gaps based on a key contextual factor. 

 

 

Methodology 

 
Data Source & Cleaning 

To address the research questions, data were drawn from the Programming with AI Tools survey (IRB-

approved) administered once in Fall 2024 at a public university in Pennsylvania. Invitations went to 

students in classes from six non-overlapping Computer Science and Computer Information Systems 

courses, ensuring no individual appeared on more than one roster. Each invitation contained a unique, 

single-use link that expired after submission; the survey platform also blocked repeated attempts from the 
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same IP address. Fifty undergraduates (first-year through senior) completed the questionnaire—mean 

programming experience ≈ 3.5 years, median AI-tool experience ≈ 1 year. Participation was anonymous, 

voluntary, and limited to one response per student, eliminating duplicate entries. Table 1 in Appendix A 

lists the eleven behaviour items analysed. 

 

Each behavior was measured with a Likert-style frequency scale: "In your recent programming 

assignments, how often did you [behavior]?” Students responded on a 5-point scale: Never (1), Rarely (2) 

– about 1–2 times per assignment, Sometimes (3) – 3–4 times per assignment, Often (4) – 5–6 times, and 

Always (5) – 7 or more times per assignment. These anchors (provided in the survey) ensured that students 

had a concrete sense of what “often” or “always” meant in terms of occurrences per assignment. We treated 

these responses as ordinal data that can be mapped to numeric values 1–5 for analysis. For instance, a 

response of “Always” was coded as 5 and “Never” as 1. Appendix A provides the list of survey questions.  

 

The survey consisted of eleven behavior items aligned with our conceptual model of recommended AI 

usage (see Table 1), covering key planning and performance-phase practices. These included behaviors 

such as checking for similar AI-solved problems, writing down needs before prompting, independently 

understanding the problem, testing and running AI-generated code, rewriting questions, integrating AI and 

personal code, asking AI to explain unclear code, and switching to manual coding when AI is unhelpful. 

Each item used a 5-point frequency scale. The survey also asked how often students use AI for complex 

programming tasks (over 50 lines of code). We used this as a complexity indicator, grouping students who 

answered “Often” or “Always” as High-Complexity users and the rest as Low-Complexity users. The 

survey items in Appendix a shows the three survey pertaining to task complexity. 

 

Content validity of the survey questions was addressed by deriving each item from Zimmerman’s SRL 

constructs (Zimmerman, 2002) and AI-literacy literature, and then having an an industry software engineer 

review the set to confirm that it fully and appropriately represented the targeted behaviours. Their feedback 

led to minor revisions in wording but no additions or deletions, supporting the instrument’s adequacy in 

covering the domain of effective AI use in programming. 

 

The survey questionnaire was first piloted with a small group of senior students from the computing 

programs to refine wording and confirm face validity. Internal-consistency analysis on the full study sample 

yielded a Cronbach’s α of 0.91, indicating excellent reliability and suggesting the 11 behavior items cohere 

well as a single measure of AI-supported programming practice. 

 

The dataset was cleaned and verified, with all 50 respondents providing complete data for each behavior 

item. No missing values or response biases (such as straight-lining) were detected, as students varied their 

answers across behaviors. All items were positively phrased, so higher scores indicated more frequent use 

of recommended practices, and no reverse coding was necessary. 

 

Operationalizing the Ideal Benchmark and Gap Computation 

The ideal benchmark was the student response of “Always” (score of 5 on the 5-point scale) for each 

behavior, reflecting a strict pedagogical goal. For example, students should always test AI-generated code 

or plan before prompting. The gap for each behavior was calculated as follows: Gap = 5 – Student’s Likert 

score, resulting in values from 0 (no gap) to 4 (maximum gap). For example, a student scoring “Sometimes” 

(3) for testing AI outputs would have a gap of 2. 

 

This study also tested an alternative threshold (treating “Often” as acceptable), but the results mirrored the 

stricter benchmark. Using “Always” as the ideal better differentiates high performers. Gap scores were 

averaged across groups and analyzed using non-parametric methods (appropriate for ordinal data). This 
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study reports the percentage of students with gaps >0 (i.e., not answering “Always”), highlighting how 

widespread shortfalls are. This approach balances conceptual clarity with practical insights into AI usage 

habits. 

 

Gap Analysis and Statistical Tests 

The gap analysis is conducted in two steps. First, for RQ1 (overall shortfalls), we calculated the mean gap 

and percentage of students below the ideal for each behavior across all 50 students, allowing us to rank and 

visualize (Figure 1) which practices had the most significant shortfalls. Table 1 summarizes each behavior’s 

mean gap and the proportion of students not meeting the ideal. 

 

For RQ2 (complexity differences), we compared gap scores between High- and Low-Complexity groups 

using the Mann–Whitney U test, which is well-suited for small sample sizes and ordinal data. This test 

allowed us to assess whether the distribution of scores differed significantly between the two groups, even 

without assuming normality. While the mean gap scores were reported for each group and statistically 

significant differences were noted, the p-values were interpreted in context rather than applying strict 

corrections for multiple comparisons (American Statistical Association, 2016 ; Institute of Education 

Sciences, 2023; Sullivan & Fein, 2012). Because eleven behaviors were tested, applying a strict Bonferroni 

correction (p < 0.05/11 = 0.0045) to rule out the chance of finding at least one significant resuly by chance,  

would sharply raise the risk of Type II error, overlooking real effects (Perneger, 1998). Instead, the p-values 

were weighed alongside the magnitude and direction of each gap difference and the educational relevance 

of the behavior, so that statistically modest yet instructionally important trends were not dismissed.  

 

This approach is especially appropriate in exploratory research, where the goal is to identify meaningful 

trends without overlooking potentially important results due to overly conservative statistical adjustments. 

This balanced approach pinpoints behaviours on which high-complexity students truly outperform (or 

underperform) their peers, supplying instructors with clear targets for scaffolding while avoiding the loss 

of meaningful signals that overly conservative corrections can cause.  

 

All analyses were performed in Python (Pandas, SciPy), and the results are descriptive, given the self-report 

nature of the data. Gap values are interpreted as the distance from the ideal: a gap of 0 means “Always” 

performing the behavior, while higher gaps indicate less frequent practice. The next section, presents 

findings for all nine behaviors and discuss how task complexity relates to these gaps. 

 

 

Results 

 
Overall Shortfalls (RQ1) 

Gap scores 5 minus the student’s Likert rating, with 5 representing the ideal “Always”—reveal a strikingly 

uneven proficiency profile across the nine AI-support behaviors. Figure 1 shows the mean gap for each AI-

support behavior. A gap of 0 means students on average already do the behavior Always; a gap of 4 means 

they Never do it. Behaviors are sorted from largest to smallest gap. Error bars show standard error of the 

mean gap.  
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Figure 1. Mean shortfall (gap) for each AI-support behavior (N=50 students). 

 

Table 1 shows the mean gap for each behavior and the percentage of students with a gap greater than or 

equal to 1 for each behavior. Appendix B shows the distribution of each gap score for each of the eleven 

behaviors. 

 
Table 1 AI-Supported Programming Behavior Gap Survey Results 

AI-Supported Behavior 

(Survey Item) 

Mean Gap (0 = 

none, 4 = max) 

% Students 

with 

Gap >=1 

Mean Gap: 

Low-

Complexity 

(n = 41) 

Mean Gap: 

High-

Complexity 

(n = 9) 

Mann-

Whitney 

( U, p) 

Check similar problems 

with AI before starting 

3.14 100 % 
3.48 2.58 

(446, 0.0011) 

Combine AI code with own 

code 

2.62 94 % 3.13 1.79 (491, 0.0001) 

Rewrite question when AI 

answer is unhelpful 

2.34 84 % 2.74 1.68 (418, 0.0112) 

Write down needs before 

asking AI 

2.22 74 % 2.45 1.84 (373, 0.108) 

Run AI-generated code to 

check it works 

2.06 72 % 2.58 1.21 (444, 0.0022) 

Test AI suggestions before 

using 

2.06 70 % 2.71 1.00 (476, 0.0002) 

Look for errors in AI 

suggestions 

2.02 76% 2.61 1.05 (469, 0.0004) 

Ask AI to explain code you 

don’t understand 

1.94 72 % 2.68 0.74 (497,0.0001) 

Switch to manual coding 

when AI isn’t helpful 

1.40 54 % 1.65 1.00 (365, 0.138) 

Try to understand the 

problem yourself first 

0.94 40 % 
1.23 0.47 

(339, 0.313) 

Check solution meets all 

requirements 

0.66 36% 0.65 0.68 (284, 0.812) 
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At the top of the deficit ladder sits “Check whether the AI has already solved a similar problem” (mean 

gap = 3.14). Every participant fell short of “Always” on this behavior, and fully two-thirds marked “Rarely” 

or “Never,” indicating that students seldom treat AI as a research partner for hunting anlaogous solutions. 

This forethought lapse is pivotal: learners lose an efficient way to calibrate prompts or draw inspiration 

from solved exemplars without scouting for precedents. 

 

The second-worst gap concerns “Combine AI code with personal code” (mean = 2.62, 94 % below ideal). 

Fewer than one in ten students reported “Always” integrating snippets, implying that most either copy AI 

output wholesale or ignore it rather than weaving it into their logic. Because modern development often 

involves stitching together multiple code sources, this weakness suggests that students are ill-prepared for  

authentic workflows in which the AI is a collaborator, not a one-shot answer engine. Close behind, “Rewrite 

a question after an unhelpful answer” registers a gap of 2.34. Seventy-per-cent of learners stop after a single 

inadequate response, forgoing the iterative prompting that experienced AI users rely on to refine output 

quality. A cluster of verification behaviors follows, each with mean gaps just above two points. Roughly 

three-quarters of the sample neglect running AI code (2.06), testing suggestions (2.06), and actively looking 

for errors (2.02). In concrete terms, only 24–30 % of students always execute these checks, leaving a large 

majority who trust AI output at least occasionally without systematic validation. Given well-documented 

hallucination and compilation errors in AI-generated code, this shortfall poses both learning and correctness 

risks. 

 

Forethought planning is also weak: “Write down what you need before asking AI” posts a gap of 2.22. As 

shown in the gap distribution in APPENDIX B, over half of students(74 %) rarely commit their 

requirements to paper or pseudo-code before prompting. The absence of this seemingly simple step reflects 

a deeper metacognitive gap—students jump directly to asking without clarifying goals, increasing the 

likelihood of vague prompts and subpar answers. Encouragingly, the picture brightens for self-reliant 

actions. “Switch to manual coding when the AI is not helpful” records a smaller gap of 1.40; 44 % of learners 

always disengage from unhelpful output, and a further 21 % do so often. Even stronger is “Try to understand 

the problem yourself before using AI,” with a mean gap of just 0.94. Sixty percent of respondents claim 

they always attempt their understanding first, suggesting that foundational agency remains intact. The best-

performed item overall—“Confirm that the final solution meets all requirements”—posts a minimal gap of 

0.66, indicating that most students run a final mental or automated checklist before submission, even if 

earlier validation steps were partial. 

 

Taken together, the data depict a group of students who retain core problem-solving instincts but struggle 

with AI-specific forethought, iteration, and verification. The magnitude of these shortfalls indicates the 

need for targeted instructional scaffolds: explicit training in exemplar scouting, prompt refinement, and 

systematic testing could convert sporadic, intuitive AI use into a disciplined, self-regulated workflow. 

 

Task Complexity Differences (RQ 2) 

To probe whether experience with demanding code influences AI-use quality, the sample was divided into 

a High-Complexity group—students who reported using AI “often” or “always” on programs exceeding 50 

lines of code—and a Low-Complexity group, encompassing everyone else. Despite the High group’s small 

size (n = 9), non-parametric tests reveal a striking, coherent advantage. 

 

Forethought and planning behaviors improve first. High-complexity students cut the gap for “rewriting an 

unhelpful prompt” from 2.74 to 1.68 (U = 418, p = .011), showing they persist until the AI responds 

satisfactorily. Even more dramatic is “combining AI code with personal code”: the deficit shrinks from 3.13 

to 1.79 (U = 491, p < .0001), suggesting that complex projects force learners to splice snippets rather than 

copy-paste wholesale. A parallel, though non-significant, trend appears for “writing down needs before 
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asking AI (2.45 → 1.84), hinting that the same students are also thinking ahead more deliberately. 

Verification habits strengthen next. High-complexity users almost halve their short-falls in running AI code 

(2.58 → 1.21) and testing suggestions (2.71 →1.00); similarly, their gap for looking for errors drops from 

2.61 to 1.05 (all p ≤ .002). These data imply that once tasks become intricate, students unquestioningly 

recognize the cost of trusting AI and adopt systematic checks—behaviors essential for professional 

robustness. 

 

Conceptual engagement deepens as well. The most significant absolute gain appears in asking the AI to 

explain unfamiliar code, where the gap plummets from 2.68 to 0.74 (U = 497, p = .0001). Complex tasks 

prompt students to interrogate the AI for rationale rather than settle for a “black-box” answer, aligning with 

self-regulated learning’s performance-monitoring phase. Where complexity fails to help is equally 

instructive. The two groups do not differ reliably in switching to manual coding, understanding the problem 

first, or checking final requirements. These actions were already moderate-to-strong across the cohort, 

suggesting a ceiling effect: students retain agency regardless of task size. However, one critical forethought 

behavior remains stubbornly weak: checking whether the AI has solved a similar problem. Even the High 

group posts a hefty gap of 2.58 (vs. 3.48 in the Low group, p = 0.0011), confirming that pre-searching is a 

universal blind spot. 

 

Results on the effects of task complexity indicate that engaging AI on complex assignments acts as an 

informal tutor, sharpening iterative prompting, code integration, verification, and conceptual inquiry. 

However, engaging in complex problems does not teach learners to scout existing AI solutions, nor does it 

fully mitigate over-persistence with the tool. These residual gaps highlight domains where explicit 

instruction must supplement experiential learning. 

 

 

Discussions 

 
The results from the gap analysis sharpen the picture of how students self-regulate when programming with 

AI. The most severe shortfall remains forethought scouting: every respondent fell below the ideal of 

checking whether the AI has solved a similar problem (mean gap = 3.14). Skipping this step deprives 

learners of analogical examples that could guide both prompt quality and solution design; an omission 

squarely in SRL’s planning phase (Zimmerman, 2002). Two further weaknesses dominate the performance 

phase. First, combining AI code with personal code posts a gap of 2.62; most students still treat AI output 

as all-or-nothing rather than weaving snippets into their logic. Second, verification is sporadic: running AI 

code, testing suggestions, and hunting for errors all hover around a gap of 2.0, indicating that roughly three-

quarters of learners use AI output with only partial validation. These findings echo earlier work on novice 

over-trust in LLMs (Prather et al., 2024) and reveal that critical evaluation skills have yet to take root. 

 

Encouragingly, two self-reliant behaviors show modest gaps. Switching to manual coding when AI falters 

(1.40) and trying to understand the problem first (0.94) suggest many students still recognize their agency—

evidence of SRL’s monitoring and control functioning at a baseline level. Checking final requirements 

registers the smallest gap (0.66), implying that end-stage review habits are comparatively solid. 

 

Task Complexity as a Catalyst and a Caveat 

Comparing high- and low-complexity users indicates the formative power of challenging work. Students 

who frequently applied AI to large programs (> 50 lines of code) cut the gap on several AI-support 

behaviors: integration dropped from 3.13 to 1.79 (U = 491, p < .0001); prompt-rewriting from 2.74 to 1.68 

(p = .011); and all three verification items fell by roughly 1.4 points (all p ≤ .002). Most striking, the gap 

for asking the AI to explain code plunged from 2.68 to 0.74, signaling a shift from black-box acceptance to 
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conceptual inquiry. These gains align with the “desirable difficulty” theory—more challenging tasks push 

learners into richer SRL planning cycles, monitoring, and adaptation (Bjork & Bjork, 2011; Weissgerber 

et.al. 2016). 

 

However, complexity leaves two blind spots. First, even advanced users retain a large deficit on pre-

searching (gap = 2.58), confirming that students across the board do not view AI as a research archive. 

Second, the groups do not differ reliably when switching to manual coding; the high group trends toward 

greater persistence with unhelpful AI (1.65 vs 1.00, p = .138). Thus, while complexity cultivates strategic 

depth, it can also breed dependence and does not automatically fix foundational planning lapses. 

 

Instructional Implications 

Educators should harness complex, authentic projects to reinforce iteration, integration, and verification but 

must overlay explicit scaffolds for the stubborn gaps in pre-search and adaptive disengagement. Table 1 

summarises five low-overhead interventions mapped to the observed deficits. Together, they span all SRL 

phases: a pre-flight scan fortifies planning; split–merge tasks and prompt sprints enrich performance 

control; unit-test checkpoints institutionalize monitoring; and a three-prompt reflection rule strengthens 

adaptive self-evaluation. Implemented in concert, these measures can convert sporadic, tool-centered 

behavior into a balanced, self-regulated partnership with AI, leveraging the gains complexity confers while 

guarding against its liabilities. 

 
Table 2. Targeted Scaffolds for Closing AI-Usage Gaps 

Gap Addressed Scaffold Concrete Classroom Action 

Forethought: no search 

for prior AI solutions 

Pre-flight AI scan Students submit a screenshot or 2-line summary of 

one AI-found exemplar before coding. 

Integration: seldom 

merge AI & own code 

Split–merge 

exercise 

Instructor supplies an AI helper function; students 

must adapt and embed AI generated code in it, 

grading the merge diff/comments. 

Prompt iteration: stop 

after one poor answer 

Prompt-

engineering sprint 

15-minute in-class race to refine a weak prompt until 

output passes a rubric; bonus credit for best 

improvement. 

Verification: partial or 

absent testing 

Unit-test 

checkpoint 

Every AI-assisted submission must include passing 

tests or run logs; small marks for evidence. 

Over-reliance when AI 

fails 

Three-prompt 

rule + reflection 

After three failed AI attempts, students pivot to 

manual coding and write a 50-word reflection on the 

decision. 

 

Limitations and Future Work 

This study is limited by self-reported frequencies, learners may over- or under-estimate their habits, and by 

a modest, self-selected sample, particularly the high-complexity subgroup (n = 9). Demographic variables 

such as gender and age were not collected, which limits the ability to explore variation across subgroups, 

including traditional vs. non-traditional learners. Future studies should include these variables to examine 

potential moderating effects.  

 

Despite these caveats, the project offers the first quantitative map of where students falter in AI-assisted 

coding and how difficulty modulates those gaps. It pinpoints four high-impact deficits, planning queries, 

prompt revision, verification, and code integration, giving instructors clear targets. The five low-overhead 

scaffolds proposed here translate directly into classroom practice, and the gap-score framework is ready for 

replication with richer data and broader populations. 

 



Issues in Information Systems 
Volume 26, Issue 1, pp. 458-471, 2025 

 
 

467 

 

The next steps move from diagnosis to remedy. Instructors can pilot AI-use workshops, split-merge labs, 

and prompting journals, then track whether gap scores shrink and whether smaller gaps predict higher code 

quality, grades, or concept gains. Qualitative interviews should probe why learners bypass certain 

behaviors, sharpening interventions. Finally, as tools evolve, the framework must evolve too; even 

“smarter” AI will still demand human planning, verification, and critical judgment, keeping AI literacy 

instruction essential.  

 

 

Conclusion 

 
This study provided a quantitative look at how students currently engage (or fail to engage) in recommended 

practices when programming with AI assistance. The “gaps” we identified, particularly in upfront planning 

and iterative refinement, highlight that students are often not using AI tools as effectively as they could. 

The encouraging news is that these are addressable gaps: With proper guidance, curriculum design, and 

experience, students can learn to use AI in a more self-regulated, productive manner. By “minding the gap” 

and proactively teaching AI-support behaviors, educators can help students solve problems with AI and 

learn more from the process. As Zimmerman (2002) noted, self-regulation is teachable and is a key 

differentiator in successful learners. In the era of AI, self-regulation takes on new forms;  it means knowing 

how to collaborate with a non-human partner in one’s learning. Our findings offer concrete targets for 

teaching interventions to foster that capability. 

 

Bridging the gap in AI-supported programming practices will better prepare students for a future where 

human-AI collaboration is the norm. This work lays a foundation for improving AI literacy in computing 

education by quantifying these shortfalls and their predictors. We envision a classroom where using an AI 

assistant is second nature to students and where they consistently apply the best practices to use it wisely. 

When such best practices become widespread, the gap will truly be narrowed, and the promise of AI in 

education – augmenting human learning, not replacing it. 
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Appendix A 
 
Table A – Programming with AI tools  Survey 
1.Your programming experience in years.    

2. AI tool experience in years   

3. Current academic standing   

4. Major   

Questions- Usage Behavior:  

In your recent programming assignments, how 

often did you: 

Never 

[1] 

Rarely (1-2 

times per 

assignment/

project)  

 [2] 

Sometimes 

(3-4 times 

per 

assignment/

project) [3] 

Often (5-6 

times per 

assignment 

/project)  

[4] 

Always (7+ 

times per 

assignment / 

project)  

[5] 

5a.[Check if similar problems can be solved using AI 

before starting?] 

          

5b. [Write down what you need before asking AI for 

help?] 

          

5c. [Try understanding the problem yourself before 

using AI?] 

          

5d. [Test AI's suggestions before using them in your 

code?] 

          

6a. [Rewrite your questions/prompts when AI gives 

unhelpful answers?] 

          

6b. [Run AI's code to check if it works?]           

6c. [Combine pieces of AI code with your own 

code?] 

          

6d. [Ask AI to explain code you don't understand?]           

7a. [Look for errors in AI’s solution?]      

7b. [Switch to coding yourself when AI isn't 

helpful?] 

     

7c. [Check solution meets all the requirements ?]           

Questions- Complexity: I use Al tools for:            

7a. [Simple programming tasks <  10 lines of code)]           

7b. [Medium complexity Tasks (10-50 lines of code)]           

7c. [Complex Programming Tasks (> 50 lines of 

code)] 
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Appendix B 
 

Table B – Frequency distribution of gaps for each AI-support behavior. 

 

 


