Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

DOI: https://doi.org/10.48009/1 iis 2025 137
Generative Al for web application pentesting

Raul Diaz-Parra, Universidad de Lima, Lima-Peru, jdiazp@ulima.edu.pe

Abstract

The integration of Generative Al into cybersecurity practices has opened new possibilities for automating

and enhancing offensive security operations. This study explores the application of ShellGPT in the
context of web application penetration testing using the OWASP Web Security Testing Guide (WSTG)
as the methodological framework. The experiment targeted a vulnerable application and systematically
progressed through reconnaissance, enumeration, and exploitation phases. Notably, ShellGPT
successfully identified and exploited an SQL injection vulnerability, enabling full data extraction from the
backend database. Results show that LLMs can generate accurate commands and support non-expert users
throughout the penetration testing lifecycle.

Keywords: Cybersecurity, Offensive security, Penetration testing, Large language models, Shell GPT

Introduction

The financial impact of data breaches continues to rise, the global average cost of a data breach reached
USD 4.88 million, 10% increase from the previous year (IBM, 2024). This increase is largely driven by
operational disruptions, loss of customers, and post-breach remediation efforts. Therefore, Penetration
testing has become a fundamental practice in contemporary cybersecurity due to the increasing frequency,
complexity, and impact of cyberattacks affecting organizations worldwide (Alhamed & Rahman, 2023). As
digital infrastructures expand and integrate deeply with operational processes across sectors such as
healthcare, finance, and government, new vulnerabilities emerge that adversaries can exploit (Lazarov,
2025). Penetration testing allows organizations to proactively simulate real-world attacks in controlled
environments, helping to identify vulnerabilities and prioritize remediation efforts (Alhamed & Rahman,
2023). Regulatory frameworks such as ISO 27001, PCI DSS and NIST Cybersecurity Framework have
emphasized the need for periodic security assessments to ensure compliance and readiness against evolving
threats (PCI Security Standards Council, 2024; National Institute of Standards and Technology, 2024; ISO,
2022). Therefore, systematic penetration testing is necessary to protect organizational assets, maintain
stakeholder trust, and enhance incident preparedness.

In addition, the growing use of Large Language Models (LLMs) has significantly transformed the
cybersecurity landscape, particularly within the offensive domain such as penetration testing. GPT-4 has
demonstrated advanced capabilities in natural language understanding, code generation, and contextual
analysis, facilitating their integration into automated penetration testing (PT) scenarios and web application
exploitation (Uddin et al., 2025; Chen et al., 2024). This technological evolution has led to combine
generative Al with pentesting methodologies from reconnaissance to complex attack simulation (McKinnel
et al., 2019).

Recent studies have highlighted the value of LLMs in planning and executing attack paths. (Chen et al.,
2024) emphasize that LLMs can be used to simulate attack scenarios, generate offensive actions, and adapt

502

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

attacks to the target environment. Similarly, Uddin et al., (2025) use LLM to generate payloads to evaluate
the effectiveness of system resilience through simulated attacks. These capabilities not only accelerate the
exploitation cycle but also enhance the effectiveness of identifying vulnerabilities and attack vectors.

However, the use of LLMs in offensive contexts also raises significant ethical and technical challenges.
McKinnel et al. (2019) point out that although AI integration into vulnerability assessment improves
efficiency and scalability, it introduces risks such as false positives, reliance on limited training data, and
potential misuse by malicious actors. This study has the purpose of examining how Generative Al (GenAl)
tools can be integrated into web application penetration testing and assessing their overall impact on the
penetration testing process.

Literature Review

In recent years, the rise of Generative Artificial Intelligence (GenAl), particularly Large Language Models
(LLMs), has transformed how penetration testing is conceived and executed. Several recent studies have
demonstrated the potential of these technologies to automate tasks traditionally reserved for human experts,
thereby reducing costs and accelerating security assessment cycles (Hilario et al., 2024; Zaydi & Maleh,
2025).

Hilario et al. (2024) used ChatGPT 3.5 in conjunction with ShellGPT to carry out full penetration tests in
simulated environments. Their work demonstrated that an LLM can guide the entire pentesting cycle from
reconnaissance to exploitation while offering accurate commands and generating quality reports. This study
focused mainly on evaluating network services.

By other hand, Martinez et al. (2025) conducted a comparative analysis of ChatGPT-4, Claude Opus, and
GitHub Copilot under the Penetration Testing Execution Standard (PTES) framework. They found that
while LLMs cannot fully replace human pentesters, they provide significant support, especially during
intelligence gathering and exploitation phases. This finding aligns with that of Zaydi & Maleh (2025), who
highlight how tools like ShellGPT automate key tasks such as dynamic payload generation and privilege
escalation.

Frameworks like CAI (Mayoral-Vilches et al., 2025) and BreachSeek (Alshehri et al., 2024) push this
automation further by deploying multi-agent architectures that integrate LLMs with toolchains to simulate
full-scale attacks in realistic scenarios. Both frameworks focused on infrastructure assessment. Fang et al.
(2024) demonstrated that red teams who used LLM agents can exploit zero-day vulnerabilities without prior
knowledge.

Wang & Johnson (2024) proposed an Al-moderated knowledge discovery model that leverages ChatGPT,
to analyze simulated network traffic and identify potential vulnerabilities. Their study, grounded in strategic
principles from The Art of War, demonstrates how GenAl can improve the efficiency of knowledge
discovery in pentesting scenarios. However, they also reveal critical limitations, including reduced accuracy
with large input files and the need for human validation of Al-generated findings.

Based on the above discussion, this section has identified two gaps in the literature: 1) application of LLMs

to perform penetration testing against web application, and 2) lack of studies using penetration testing
methodologies on the context of modern web application.

503

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

Theorical Framework
Generative Al

Generative Al (GenAl), particularly through Large Language Models (LLMs), is reshaping penetration
testing by enabling automation, contextual reasoning, and intelligent task execution across the attack
lifecycle. GenAl tools can simulate adversarial behavior, craft dynamic payloads, and generate commands
in natural language, lowering barriers to complex offensive operations while accelerating test cycles
(Aung et al., 2025).

The use of ShellGPT in this study is justified by its specialized ability to understand and generate shell
language commands, an essential capability in IT operations where precision and efficiency are critical.
Unlike general-purpose language models such as GPT-2 (Uddin et al., 2025) or programming-oriented
variants like CodeGPT (Lu et al., 2021), ShellGPT is specifically tailored for the shell domain through
techniques such as pre-tokenization and Equivalent Command Learning, which enhances the model’s
semantic understanding of functionally similar commands (Shi et al., 2023). These domain-specific
adaptations enable ShellGPT to outperform baseline models in key tasks such as command
recommendation, error correction, and natural language-to-shell translation, making it a robust tool for
reliable automation and intelligent assistance in operating system environments.

In this context, ShellGPT, a command-line interface that integrates OpenAl's GPT models, operationalizes
GenAl for cybersecurity by translating user prompts into executable shell commands, supporting
reconnaissance, exploitation, and privilege escalation directly from the terminal (TheR1D, 2023).

Such integration enhances tester productivity and bridges skill gaps by enabling even non-experts to
perform sophisticated operations. As noted by Hilario et al. (2024), tools like ShellGPT exemplify how
LLMs can augment penetration testing workflows, though they also introduce risks such as hallucinated
commands and overreliance on Al outputs, underscoring the need for expert oversight and secure
deployment practices.

Web Security Testing Guide (WSTG)

The OWASP Web Security Testing Guide (WSTG) serves as a comprehensive and community-driven
methodology for assessing the security of modern web applications. WSTG has become a widely
recognized standard in the field of application security testing (OWASP, 2023). It offers a structured and
modular approach to identify, verify, and document security vulnerabilities, aligning with both industry
best practices and evolving threat models.

WSTG is organized in categories that reflect the various stages and components of a typical web application
penetration testing, including Information Gathering, Configuration and Deployment Management Testing,
Authentication Testing, Session Management Testing, Access Control Testing, Input Validation Testing,
and Business Logic Testing, among others. Each test case is methodically documented with objectives, test
procedures, and references to known vulnerability, such as OWASP Top Ten (OWASP, 2023).

WSTG is a mature, adaptable, and theoretically grounded methodology that reflects both the practical needs

of penetration testers and the strategic imperatives of secure software engineering. Therefore, this study
will use this methodology.

504

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

Methodology

The penetration testing experiment was based on using interactions with ChatGPT through the command-
line interface (CLI), utilizing sgpt to run shell commands in Kali Virtual Machine. The selected web
application target was http://testaspnet.vulnweb.com. The methodology used was WSTG to emulate the
experience of a pentester who has used security tools manually but does not yet have the syntax or tool
parameters memorized.

In this study, we employ a pre-trained GPT model without applying any fine-tuning or additional training.
This decision aligns with the methodology proposed by Hilario et al. (2024), who emphasize that “no fine-
tuning was conducted on the GPT model; all outputs were generated using the default behavior of the model
as provided by OpenAl.” Instead of modifying the model’s internal parameters, we adopt a prompt
engineering approach to guide the model’s output through carefully crafted input examples. This strategy
enables the evaluation of the model’s zero-shot performance and its inherent capabilities in translating
natural language instructions into shell commands without domain-specific adaptation.

Experimentation
Information Gathering
Step 1: Conduct Search Engine Discovery Reconnaissance for Information Leakage (WSTG-INFO-01)

Objective: Map the exposed attack surface of a target domain, revealing subdomains, IP addresses and
services.

Terminal Input for GenAl:
sgpt --shell "Execute recon of domain vulnweb.com"

Terminal Output:
whois vulnweb.com && dig vulnweb.com && nslookup vulnweb.com && host vulnweb.com &&
theHarvester -d vulnweb.com -1 100 -b all

Terminal input for GenAl:
sgpt --shell "Execute enumeration of vulnweb.com with amass"
Terminal Output:

amass enum -d vulnweb.com

Explanation: To gather preliminary intelligence on the target domain vulnweb.com, a set of standard
reconnaissance and enumeration tools were executed. These tools are needed to identify domain registration
details, DNS configurations, email addresses, and associated subdomains, which are crucial for mapping
the attack surface. By combining passive and active enumeration, the reconnaissance phase was able to
construct a detailed profile of the domain's internet-facing assets like http://testaspnet.vulnweb.com

505

http://testaspnet.vulnweb.com/

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

Step 2: Fingerprint Web Application Framework (WSTG-INFO-08)

Objective: Fingerprint the components used by the web application such as Web Application Firewall.

Terminal Input for GenAl:
sgpt --shell "Identify web application firewall on http://testaspnet.vulnweb.com"

Terminal Ouptut:
wafwOOf http://testaspnet.vulnweb.com

Explanation: To determine whether the target web application is protected by a Web Application Firewall
(WAF), the tool wafw00f was employed. It is identified Microsoft Web Application Firewall was
implemented.

Step 3: Identify Application Entry Points (WSTG-INFO-06)

Objective: Identify possible entry points like ports and services

Terminal Input for GenAl:
sgpt --shell "Scan all ports and services of http://testaspnet.vulnweb.com"

Terminal Output:
nmap -p- -sV testaspnet.vulnweb.com

Terminal Input for GenAl:
sgpt --shell "Scan ports and services of http://testaspnet.vulnweb.com"

Terminal Output:
nmap -sV testaspnet.vulnweb.com

Explanation: To assess the external attack surface of the target host http://testaspnet.vulnweb.com, two port
scanning strategies were employed using Nmap. These scans aim to identify open ports, associated services,
and potentially vulnerable software versions running on the target host. It was identified that the web server
has IIS service on port 80.

Step 4: Enumerate Applications on Webserver (WSTG-INFO-04)

Objective: Enumerate the applications or URLSs in the web server.

Terminal Input for GenAl:
sgpt --shell "Execute dirsearch recurservely of http://testaspnet.vulnweb.com and exclude codes

500,404,403"

506

http://testaspnet.vulnweb.com/
http://testaspnet.vulnweb.com/
http://testaspnet.vulnweb.com/

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

Terminal Output:
dirsearch -u http://testaspnet.vulnweb.com -r -x 500,404,403

Explanation: To identify hidden resources within the web application hosted at
http://testaspnet.vulnweb.com, the tool dirsearch was employed for automated directory enumeration. The
command used, enables recursive scanning of directories and subdirectories while excluding common
HTTP error responses (500, 404, and 403) to reduce false positives and irrelevant output. This method
facilitates the discovery of unlinked or misconfigured endpoints that may expose sensitive files,
administrative interfaces, or development artifacts. Recursive enumeration is particularly effective in
uncovering deeply nested content structures that could be overlooked during standard scanning. It was
identified different URLs within the web server, one of them is http://testaspnet.vulnweb.com/default.aspx

Step 5: Map Execution Paths Through Application (WSTG-INFO-07)

Objective: Map the target application and URLs for input validation.

Terminal Input for GenAl:
sgpt --shell "Execute list URLSs of http://testaspnet.vulnweb.com/default.aspx"
Terminal Output:

curl -s http://testaspnet.vulnweb.com/default.aspx | grep -oP '(?<=href=")["]*'

Explanation: This command operates by first using curl -s to silently fetch the raw HTML content of the
specified webpage, suppressing any progress or error messages to ensure clean output. The resulting HTML
is then piped into grep, configured with the -o flag to output only the matching substrings and the -P flag
to enable Perl-Compatible Regular Expressions (PCRE). The regular expression (?<=href=")[""]* utilizes
a positive lookbehind assertion to locate content that immediately follows the attribute href=", capturing all
non-quote characters until the next closing quote. This precisely isolates the values of href attributes, i.e.,
the URLs embedded in hyperlinks within the HTML structure. The result is a list of all link targets present
in the document, including both internal and external references. So, it was identified the URL
http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html

Input Validation
Step 6: Testing for SQL Injection (WSTG-INPV-05)

Objective: Identify SQL injection points.

Terminal Input for GenAl:

sgpt --shell "Execute sqlmap to
http://testaspnet.vulnweb.com/ReadNews.aspx?1d=0&NewsAd=ads/def.htm]"

Terminal Output:

507

http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html
http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

sqlmap -u "http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html" --batch

Explanation: This command leverages sqlmap, an open-source penetration testing tool designed to detect
and exploit SQL injection flaws. The -u flag specifies the target URL containing potentially injectable
parameters, specifically, id and NewsAd, which are query string inputs. By including both parameters in
the full URL, the tool is able to systematically test them for vulnerability to SQL-based attacks. The --batch
option enables non-interactive execution by automatically selecting default choices during the testing
process, making it suitable for automation or scripted evaluations. This approach eliminates the need for
human intervention during runtime and ensures consistent testing conditions. SQLmap identified three
successful payloads: Boolean, Stacked and Time-based injection.

Step 6.1: List Databases

Objective: Enumerate databases of the web application.

Terminal Input for GenAl:

sgpt --shell "Execute sqlmap to enumerate databases of
http://testaspnet.vulnweb.com/ReadNews.aspx?1d=0&NewsAd=ads/def.htm]"

Terminal Output:

sqlmap -u "http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html" --dbs

Explanation: For our analysis, the terminal executed SQLMap command which allowed us to validate the
tool’s effectiveness in identifying injection points and retrieving schema-level metadata. This process
supports the broader goal of demonstrating automated techniques for detecting security weaknesses in web
applications. It was identified six databases: master, acuforum, acuservice, model, msdb and tempdb.

Step 6.2: Show current database.

Objective: Show current database of the web application.

Terminal Input for GenAl:

sgpt --shell "Execute sqlmap to identify current database of
http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html"

Terminal Output:

sqlmap -u "http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&News Ad=ads/def.html" --current-db

508

http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

Explanation: To determine the active database context of the target web application, the terminal used the
--current-db option in SQLMap. This allowed us to identify the specific database currently in use after
confirming the presence of a SQL injection vulnerability. It was identified database “acublog”. This
database wasn’t identified when list databases.

Step 6.3: List tables.

Objective: Show list of tables of a determined database.

Terminal Input for GenAl:
sgpt --shell "Execute sqlmap to list tables of acublog of
http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html"

Terminal Output:
sqlmap -u "http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def. htm]" --
dbms="Microsoft SQL Server" -D acublog —tables

Explanation: To enumerate the tables within the target database, the terminal executed SQLMap with the -
-tables option, specifying the database name acublog and the DBMS as Microsoft SQL Server. This allowed
us to retrieve the full list of table names, facilitating further analysis and targeted data extraction. Such
enumeration is a critical step in assessing the extent of a SQL injection vulnerability and understanding the
underlying database structure. It was identified three tables in acublog database: comments, news and users.

Step 6.4: List columns.

Objective: Show list of columns of a determined table.

Terminal Input for GenAl:
sgpt --shell "Execute sqlmap to list columns of users table of acublog database
http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html"

Terminal Output:
sqlmap -u "http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html" -D acublog
-T users --columns

Explanation: To analyze the structure of a specific table, the terminal used SQLMap with the --columns
option targeting the users table within the acublog database. This step enabled the extraction of column
names and data types, which is essential for understanding the schema and planning further data retrieval.
Such structural enumeration provides critical insights into how sensitive information may be stored and
accessed through SQL injection vulnerabilities. It was identified three columns in table users: alevel, uname
and upass.

509

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

Step 6.5: Dump table.

Objective: Show data of determined table.

Terminal Input for GenAl:
sgpt --shell "Execute sqlmap to dump users table of acublog database
http://testaspnet.vulnweb.com/ReadNews.aspx?id=0&NewsAd=ads/def.html"

Terminal Output:
sqlmap -u "http://testaspnet.vulnweb.com/ReadNews.aspx?1d=0&NewsAd=ads/def.html" -D acublog -
T users --dump

Explanation: To complete the exploitation process, the terminal used SQLMap’s --dump option to extract
the full contents of the users table from the acublog database. This operation enabled the retrieval of stored
user records, which is essential for evaluating the sensitivity of the exposed data. The ability to access such
information underscores the critical impact of SQL injection vulnerabilities on data confidentiality and
system security. It was dumped data of table “users”

Results and Discussions

The experiment demonstrated that Shell GPT, when integrated with traditional penetration testing tools such
as sqlmap, nmap, dirsearch, and amass, can effectively automate multiple stages of the OWASP Web
Security Testing Guide (WSTG). Full reconnaissance of the target domain (testaspnet.vulnweb.com) was
successfully achieved, revealing subdomains, IP addresses, and identifying an IIS service running on port
80. During enumeration, several URLs and application entry points were discovered. Notably, a SQL
injection vulnerability was identified in the id parameter of the ReadNews.aspx endpoint. This allowed for
the enumeration of databases, tables, and columns, and ultimately enabled data extraction from the users
table. The LLM accurately generated shell commands at each step without requiring the user to memorize
tool syntax or parameters, thereby streamlining the testing workflow.

These findings confirm that generative models like ChatGPT, when accessed via Shell GPT, can not only
assist but enhance the efficiency of web application penetration testing. In alignment with prior research
(Hilario et al., 2024; Uddin et al., 2025), this study reinforces the capability of LLMs to support tasks such
as reconnaissance, exploitation, and post-exploitation. Nevertheless, limitations were observed:
overreliance on Al-generated commands can lead to ineffective or incorrect execution, as previously noted
by Aung et al. (2025). Moreover, while the process was largely automated, human validation remains
essential to confirm findings and mitigate false positives. This work also highlights a notable gap in current
literature: the lack of empirical studies applying LLMs in structured methodologies like WSTG specifically
for modern web applications, thus reinforcing the significance of this contribution.

To assess the reliability and accuracy of ShellGPT in the penetration testing workflow, a comparative
analysis was conducted between the commands generated by the language model and those typically
expected from experienced human pentesters. The table below summarizes this comparison across each
major testing step in alignment with the OWASP Web Security Testing Guide (WSTG).

510

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

Table 1: Commands Generated by ShellGPT vs. Expected Commands from a Penetration Tester

WSTG Test Case Prompt to ShellGPT Command Generated by | Expected Command Difference | Assessment
ChatGPT for pentester
whois vulnweb.com && dig
vulnweb.com && nslookup
"Execute recon of domain | vulnweb.com && host | whois, dig, nslookup, Correct and
WSTG-INFO-01 vulnweb.com" vulnweb.com && | host, theHarvester None comprehensive
theHarvester -d vulnweb.com
-1100 -b all
WSTG-INFO-01 Execute enu.meratlon" of amass enum -d vulnweb.com | STasS enum -d None Fully accurate
vulnweb.com with amass <domain>
"Identify web application wafw0Of
WSTG-INFO-08 firewall on . wafw00f <url> None Accurate
http://testaspnet.vulnweb.com" hitp://testaspnet.vulnweb.com
Minor:
; } " . » | nmap -p- -sV | nmap -p- -sV URL Functionally
WSTG-INFO-06 Scan all ports and services... http://testaspnet.vulnweb.com | <ip/domain> instead of | equivalent
P
WSTG-INFO-06 "Scan ports and services..." nmap sV nmap -sV <domain> | None Correct
testaspnet.vulnweb.com
" . dirsearch “ul .
WSTG-INFO-04 rfc);ercslil\il " dirscarch http://testaspnet.vulnweb.com ilr;:ggz}s:u <url>-r - None Fully correct
Yo -t -x 500,404,403
curl with
~] " . " . B grep -oP regex-
WSTG-INFO-07 Execute list URLSs of... curl -s '(9<=href=")[A"]*" based None
parsing
WSTG-INPV-05 "Execute sqlmap to ..." sqlmap -u "<url>" --batch Z%lt?;?lz -u <url> with None Fully valid
WSTG-INPV-05 "List databases" sqlmap -u "<url>" --dbs sqlmap -u <url> --dbs | None Accurate
WSTG-INPV-05 "Show current database" (si%lmap U "Surl>" —-current- zg::;ft)_;li<url> - None Accurate
sqlmap -u "<url>" - . . _ Optional Slightly
WSTG-INPV-05 "List tables" dbms="Microsoft SQL With or without flag, not | verbose but
" dbms .
Server" -D acublog --tables required acceptable
- " sqlmap -u <url>-D
WSTG-INPV-05 "List columns" sqimap -u "<url>" -D acublog <db> -T <table> -- None Fully accurate
-T users --columns
columns
" " sqlmap -u <url>-D
WSTG-INPV-05 "Dump table" sqimap -u "<url>" -D acublog | _ 4o "p _iapes - None Accurate
-T users --dump dump

Across all test cases, Shell GPT generated commands that fall within the accepted syntax used by pentesters.
Minor differences such as including optional flags (e.g., --dbms) or referencing URLSs instead of IPs in
some tools (e.g., Nmap) did not affect command execution or results. The outputs were syntactically correct
and functionally equivalent to what would be expected from experienced penetration testers. This high
degree of alignment supports the conclusion that Shell GPT performed reliably and accurately, reinforcing
its value in supporting web application penetration testing efforts.

The integration of generative Al in penetration testing raises significant ethical considerations that must be
addressed to ensure responsible and secure deployment. While tools like ShellGPT demonstrate the
capacity to autonomously generate effective commands for tasks such as vulnerability scanning or SQL
injection testing, their use must be bounded by legal and ethical frameworks. Unauthorized or

511

http://testaspnet.vulnweb.com/
http://testaspnet.vulnweb.com/
http://testaspnet.vulnweb.com/

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

indiscriminate application of these capabilities may lead to violations of privacy, unauthorized access, and
potential damage to target systems, even if unintentionally. According to Shi et al. (2023), the ethical
deployment of generative Al in cybersecurity contexts requires robust governance mechanisms, clear
consent protocols, and continuous oversight to mitigate risks of misuse or autonomous deviation from
intended tasks.

Conclusion

This study demonstrates that Generative Al, particularly through ShellGPT, can significantly enhance the
web application penetration testing process by automating critical tasks from reconnaissance to
exploitation. Integrating LLMs with structured methodologies such as OWASP WSTG not only accelerates
the testing cycle but also lowers the entry barrier for less experienced analysts. However, consistent expert
supervision is necessary to mitigate risks from Al misuse. This work lays a foundational step for future
research into the reliability, accuracy, and secure deployment of LLMs in real-world offensive security
scenarios.

References

Alhamed, M., & Rahman, M. M. H. (2023). A Systematic Literature Review on Penetration Testing in
Networks: Future Research Directions. Applied Sciences (Switzerland), 13(12).
https://doi.org/10.3390/app13126986

Alshehri, 1., Alshehri, A., Almalki, A., Bamardouf, M., & Akbar, A. (2024). BreachSeek: A Multi-Agent
Automated Penetration Tester. 1-7. http://arxiv.org/abs/2409.03789

Aung, Y. L., Christian, 1., Dong, Y., Ye, X., Chattopadhyay, S., & Zhou, J. (2025). Generative Al for
Consumer Internet of Things: Challenges and Opportunities. IEEE Consumer Electronics Magazine.
https://doi.org/10.1109/MCE.2025.3532890

Chen, Z., Kang, F., Xiong, X., & Shu, H. (2024). A Survey on Penetration Path Planning in Automated
Penetration Testing. Applied Sciences (Switzerland), 14(18). https://doi.org/10.3390/app14188355

Fang, R., Bindu, R., Gupta, A., Zhan, Q., & Kang, D. (2024). Teams of LLM Agents can Exploit Zero-
Day Vulnerabilities. http://arxiv.org/abs/2406.01637

Hilario, E., Azam, S., Sundaram, J., Imran Mohammed, K., & Shanmugam, B. (2024). Generative Al for
pentesting: the good, the bad, the ugly. International Journal of Information Security, 23(3), 2075—
2097. https://doi.org/10.1007/s10207-024-00835-x

IBM. (2024). Informe Cost of a Data Breach 2024 Resumen ejecutivo.
https://www.ibm.com/downloads/cas/BPG4KJRX

ISO. (2022). ISO 27001 - Information security, cybersecurity and privacy protection — Information
security management systems — Requirements. https://www.iso.org/standard/27001

512

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

Lazarov, W. (2025). Computers & Security Penterep : Comprehensive penetration testing with adaptable
interactive checklists. Computers & Security, 154(February 2024), 104399.
https://doi.org/10.1016/j.cose.2025.104399

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C., Drain, D., Jiang, D., Tang,
D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano, M., Gong, M., Zhou, M., Duan, N., Sundaresan, N.,
... Liu, S. (2021). CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. Advances in Neural Information Processing Systems.

Martinez, A. L., Cano, A., & Ruiz-Martinez, A. (2025). Generative Artificial Intelligence-Supported
Pentesting: A Comparison between Claude Opus, GPT-4, and Copilot. 1-31.
http://arxiv.org/abs/2501.06963

Mayoral-Vilches, V., Navarrete-Lozano, L. J., Sanz-Gémez, M., Espejo, L. S., Crespo-Alvarez, M., Oca-
Gonzalez, F., Balassone, F., Glera-Picon, A., Ayucar-Carbajo, U., Ruiz-Alcalde, J. A., Rass, S.,
Pinzger, M., & Gil-Uriarte, E. (2025). CAI: An Open, Bug Bounty-Ready Cybersecurity Al. 1-38.
http://arxiv.org/abs/2504.06017

McKinnel, D. R., Dargahi, T., Dehghantanha, A., & Choo, K. K. R. (2019). A systematic literature review
and meta-analysis on artificial intelligence in penetration testing and vulnerability assessment.
Computers and Electrical Engineering, 75, 175-188.
https://doi.org/10.1016/j.compeleceng.2019.02.022

National Institute of Standards and Technology. (2024). The NIST Cybersecurity Framework (CSF) 2.0.
32. https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf

OWASP. (2023). Web Security Testing Guide. https://owasp.org/www-project-web-security-testing-
guide/latest/

PCI Security Standards Council. (2024). Payment Card Industry Data Security Standard. June.
https://docs-prv.pcisecuritystandards.org/PCI DSS/Standard/PCI-DSS-v4 0 1.pdf

Shi, J., Jiang, S., Xu, B., Liang, J., Xiao, Y., & Wang, W. (2023). ShellGPT: Generative Pre-trained
Transformer Model for Shell Language Understanding. Proceedings - International Symposium on
Software Reliability Engineering, ISSRE, 671-682.
https://doi.org/10.1109/ISSRE59848.2023.00082

Shi, X., Evans, R., & Shan, W. (2022). Solver engagement in online crowdsourcing communities: The
roles of perceived interactivity, relationship quality and psychological ownership. Technological
Forecasting and Social Change, 175(November 2021), 121389.
https://doi.org/10.1016/j.techfore.2021.121389

TheR1D. (2023). Shell GPT: Command-line productivity tool powered by ChatGPT. GitHub.
https://github.com/TheR1D/shell _gpt%0A%0A

Uddin, M., Irshad, M. S., Kandhro, I. A., Alanazi, F., Ahmed, F., Maaz, M., Hussain, S., & Ullah, S. S.
(2025). Generative Al revolution in cybersecurity: a comprehensive review of threat intelligence and
operations. In Artificial Intelligence Review (Vol. 58, Issue 8). https://doi.org/10.1007/s10462-025-
11219-5

513

Issues in Information Systems
Volume 26, Issue 1, pp. 502-514, 2025

Wang, P., & Johnson, C. (2024). The impacts of generative artificial intelligence (Al) in knowledge
discovery and generation for cyber defense. Issues in Information Systems, 25(2), 230-243.
https://doi.org/10.48009/2 iis 2024 119

Zaydi, M., & Maleh, Y. (2025). GAI-Driven Offensive Cybersecurity: Transforming Pentesting for

Proactive Defence. International Conference on Information Systems Security and Privacy,
I(Icissp), 426—433. https://doi.org/10.5220/0013378700003899

514

