
Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

281

DOI: https://doi.org/10.48009/2_iis_122

Modern programming languages – characteristics and

recommendations for instruction

Pankaj Chaudhary, NC A&T State University, pchaudhary@ncat.edu

Lavlin Agrawal, NC A&T State University, lagrawal@ncat.edu

Azad Ali, University of Fairfax, aali@ufairfax.edu

Abstract

Academic Information Technology (IT) programs often introduce or revise courses that teach

programming languages. They name these courses differently. A title frequently mentioned in these

courses is “modern programming languages.” Although the word “modern” may sound like the most

recent, the actual aspects of what programming languages meet the definition of “modern” may need

clarification. The set of requirements for classifying a programming language as “modern” may need to

be defined more clearly, and instructors may ensure that all features are at least explicated in some detail,

even if they are not within the scope of a particular course in a language. This paper reviews features and

criteria that may need to be fulfilled by a programming language to be considered as “modern”. It is

expected that most languages will fulfill all these criteria. However, their strengths will vary across

different features. Instructors and practitioners may need to rank order the most important criteria for

selection of a language for instruction and development purposes.

Keywords: programming courses, computer programming, modern programming languages.

Introduction

The term "Modern Programming Language" is frequently encountered in academic settings, appearing in

course titles, program descriptions, and curriculum updates. Related expressions include "Modern Software

Development" and "Modern Computer Applications" (Ogli, 2024). In these contexts, the word "modern"

typically signals contemporaneity, suggesting that the material is current and aligned with present-day

practices.

The term "modern" extends beyond just indicating recency; it also signifies that the content is aligned with

ongoing advancements and innovations in the field. When referring specifically to programming languages,

the definition of "modern" becomes more complex. In this realm, "modern" embodies the integration of

updated design principles, including enhanced readability, efficiency, safety, and support for contemporary

programming paradigms, rather than merely indicating the age of the language itself. New programming

languages emerge frequently, often developed to serve specific purposes. Julia is a strong example: its first

stable release was launched in 2018 (Salceanu, 2018). Julia is a high-level, general-purpose dynamic

programming language designed for speed and productivity, particularly in data science, artificial

intelligence, machine learning, and numerical computing. It features asynchronous I/O, metaprogramming,

mailto:pchaudhary@ncat.edu
mailto:lagrawal@ncat.edu
mailto:aali@ufairfax.edu

Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

282

and efficient package management (Julia Computing, 2024). Julia prioritizes different objectives compared

to other languages like Python, which focuses more on simplicity and readability, though both languages

share overlapping capabilities such as metaprogramming. Each language emphasizes different strengths,

and compilers and interpreters continue to evolve alongside hardware advancements like multi-core

processing. Thus, no single programming language is universally superior across all feature sets (Urma et

al., 2014). Consequently, the concept of a "modern" programming language is fluid: it depends less on the

language’s release date and more on how its features align with current computing needs and paradigms.

The purpose of this paper is to answer the last two questions: What are the features that make a

programming language “modern”? The second question what is the one programming language that is

considered “modern” when deciding on a language for a course name “Modern Programming Language.

The paper starts by identifying the features that make programming languages “modern”. Then it develops

a comparison matrix where it identifies the top ranked programming languages and checks the availability

of “modern” features in the selected languages.

Features of modern programming languages

While a comprehensive list of features of a modern programming language may need some discussion

based on the literature review, the following features may form a common subset:

1. Readability: The readability of a programming language is defined by the ease with which its code can

be understood (Setiawan et al., 2019). This concept is crucial in the context of team collaboration,

where code authored by one individual or group may later be utilized and modified by another. The

significance of readability lies in its direct impact on a program's accessibility: code that is easy to read

can be readily comprehended (Bekkhus & Arvidsson, 2020; Rashed et al., 2016), whereas poorly

written code presents challenges in understanding and upkeep.

Historically, early programming languages prioritized efficiency and the streamlining of compilation

processes. In contrast, modern languages are increasingly centered around readability, driven by

advancements in hardware and software development capabilities. The discourse on code readability

has evolved considerably, with languages like COBOL often cited as more readable due to their

English-like syntax (Ali & Smith, 2014), which favors simplicity over complexity by avoiding intricate

characters (e.g., {} for blocks of code or; for statement termination). This evolution reflects a broader

recognition of the importance of clear, maintainable code in today’s collaborative programming

environments.

2. Strongly typed: Strongly typed languages enforce strict rules when handling data types of variables,

constants, and expressions. The data type is enforced at compile time or runtime, helping to prevent

unexpected results due to type mismatches (Appiah, 2021). Another important consideration is that

there are no implicit type conversions that can lead to unexpected results. The language supports both

static and dynamic typing, as well as type inference. The latter refers to the compiler or interpreter's

ability to deduce types without explicit type annotations (Ortín, 2011).

3. Functional Programming: Functional Programming capabilities include first-class functions, which

allow functions to be treated as variables or objects. As a result, functions can be assigned to other

variables and passed as parameters to other functions, promoting code modularity and reuse (Plieskatt

et al., 2014). Another critical consideration is immutability, meaning that once an object is created, its

value cannot be changed. Any required modifications lead to the creation of new instances, which

promotes predictability and facilitates easier debugging (Plieskatt et al., 2014). Immutability also

enhances concurrency by eliminating the need for complex synchronization mechanisms, making it

essential for pure functions that produce consistent outputs for the same inputs without side effects.

Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

283

4. Object-oriented Design: Object-oriented programming (OOP) structures applications into

independent objects and classes, as discussed by Ogli (2024). OOP aims to model real-world entities,

facilitating code reuse in domains like software engineering and online game development. Key

principles include abstraction, encapsulation, inheritance, and polymorphism. While many

programming languages support OOP, some, like Java, enforce its principles more rigorously than

others, such as Python. The primary advantage of object-oriented programming (OOP) is its ability to

create modular software, which enhances maintainability and promotes reusability (Fallucchi & Gozzi,

2024). Additionally, encapsulation and abstraction can obscure details and sensitive information,

potentially improving security

5. Concurrency and Parallelism: Concurrency involves dividing a program into tasks that run

simultaneously through task switching, known as interleaving, even on a single processor. This

improves performance, scalability, and responsiveness, as tasks, referred to as threads, can share

resources and interact. While threads appear to run concurrently due to time-sharing, parallelism

denotes that all threads execute independently at the same time. Programming languages implement

concurrency through multithreading and asynchronous programming, allowing tasks to run in the

background while other parts of the program continue executing (Yang et al., 2024). Coroutines, which

enable the suspension and resumption of execution, are another mechanism used in asynchronous

programming.

6. Memory safety and Garbage Collection: Memory safety refers to the protection against programming

errors that can lead to vulnerabilities, such as buffer overflows or memory leaks, by ensuring that

programs do not access memory that they are not authorized to use (Li et al., 2022). Languages like

Rust, Java, and C# provide built-in memory safety features, which help prevent such issues (Wang et

al., 2018). Garbage collection, a key aspect of automatic memory management, automatically reclaims

memory that is no longer in use, reducing the programmer's burden and minimizing the risk of memory

leaks. Through garbage collection, the system can help ensure efficient memory utilization, leading to

improved application performance and stability.

7. Interoperability: Programming language interoperability enables different languages to interact, share

data, and reuse functionality—critical for integrating legacy systems and leveraging language-specific

strengths. For example, Python can control hardware on a Raspberry Pi using C/C++ drivers,

facilitating modular and efficient development (Van Rossum & Drake, 2009). Interoperability supports

distributed systems by allowing components in different languages to function cohesively (Henning,

2004). Mechanisms like Foreign Function Interfaces (FFI), APIs, microservices, and shared runtimes

(e.g., .NET CLR) make this possible (Oracle, 2015). Notable cases include Kotlin-Java and Python-C

integrations.

8. Tooling and Ecosystem: Tooling, especially Integrated Development Environments (IDEs) and

debuggers, is crucial for optimizing code development and enhancing overall productivity. Modern

programming languages increasingly benefit from AI-assisted tools such as GitHub Copilot, Codium

AI, and Tabnine, which provide intelligent code completion, error detection, and contextual suggestions

that streamline the coding process (Chatterjee et al., 2024). These AI tools not only aid in writing

syntactically correct code but also assist in generating relevant documentation and comments, thereby

improving code clarity and maintainability (Zhang et al., 2023).

A programming language’s ecosystem—including libraries, package managers, and community

support—is key to extending its functionality beyond core syntax. Languages like Python, Java, Rust,

and Visual Studio variants rely on ecosystems to enable code reuse, interoperability, and rapid

development through community- or vendor-built packages.

9. Modularity and Reusability: Modularity encompasses and enables interoperability and extensions,

allowing for organizing the code in separate self-contained and loosely coupled units called modules.

Well-written and loosely coupled modules provide for code reusability, and if the language has

interoperability features, these modules can be called from other languages. Modularity allows for code

Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

284

reusability, better organization, team collaboration, easier maintainability and collaboration, and

scalability (Pruijt et al., 2016). It also offers an increased level of abstraction through loose coupling

and offers functionality through a well-published API.

10. Security: The security features in programming languages come from the amalgamation of principles

like immutable data structures, strict type checking, and sandboxing. The other features, like memory-

safety and garbage collection, also make languages more secure. Programming language focusing on

security emphasizes on security-first principles (Khwaja et al., 2019) which include Least Privileges,

Separation of Duties, Defense in Depth, Principle of Economy of Mechanism, Fail-safe Defaults, Open

Design, Psychological Acceptability, Work Factor, Compromise Recording, Secure Coding Practices.

11. Performance Optimization: Modern programming languages are increasingly designed to optimize

performance by incorporating advanced computer science principles into their compiler and interpreter

architectures (Ryoo et al., 2008). These enhancements enable the generation of more efficient, faster-

executing, and less resource-intensive code. Developers can further boost performance by leveraging

specialized compilation flags and exploiting modern hardware features such as GPUs, leading to

significantly faster execution and higher floating-point operations per second (FLOPS) (Mittal &

Vetter, 2014). Most mainstream languages continue to evolve, incorporating advanced compiler

optimizations to better utilize hardware resources.

12. Cross-Platform Capabilities: Cross-platform capabilities enable code to run across multiple hardware

architectures with minimal modification. Most modern programming languages achieve this through

compilers and interpreters adapted to different systems (Bekkhus & Arvidsson, 2020; Rashed et al.,

2016). This often involves handling differences in CPU architectures, such as between x64-based and

ARM-based Windows devices. Most prevalent languages today support multiple platforms through

community or commercial efforts. Optimizing compilers and runtimes for diverse platforms is

increasingly a commercial challenge rather than a technical one.

Sample of Modern Programming Languages

At present, a large number of programming languages that incorporate features characteristic of modern

programming are in active use. The ranking of these languages is widely studied, with various organizations

applying different criteria. Among these, the TIOBE Programming Community Index is one of the most

recognized and influential benchmarks in the IT industry (Đurđev, 2024). Accordingly, the TIOBE Index

was selected as the primary reference point for this analysis (TIOBE Software, 2025). The top five

programming languages were considered, based on the rationale that proficiency in a widely used language

enables students to develop practical skills while also gaining exposure to the core principles of modern

programming. Table 1 presents the top five programming languages as of April 2025 (TIOBE Software,

2025).

Table 1. TIOBE rankings of the most popular programming languages as of April 2025

April 2025 April 2024 Programming Language Ratings

1 1 Python 23.08%

2 3 C++ 10.33%

3 2 C 9.94%

4 4 Java 9.63%

5 5 C# 4.39%

A brief description of the select features/characteristics of the programming languages selected from the

TIOBE ranking is discussed below with an objective of providing general introduction to the language and

lay the groundwork for comparison amongst them.

Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

285

Python is a high-level, versatile programming language created by Guido van Rossum in 1991 (Van

Rossum & Drake, 2003). It is valued for its readability, flexibility, and support for both object-oriented and

functional programming paradigms (Szafarczyk et al., 2024). It is widely used in scripting, data science,

and AI/ML thanks to its strong library ecosystem (DeVito et al., 2021). However, its parallelism and raw

performance are constrained by the Global Interpreter Lock (GIL), which limits its suitability for high-

performance computing tasks (Santos, 2023). Due to its interpreted nature, Python is not the fastest.

However, performance can be achieved through some just-in-time and ahead-of-time compilers like

Numba, mypy, Cython, and Taichi.

C++ is a powerful, multi-paradigm programming language developed by Bjarne Stroustrup in 1985

(Stroustrup, 2013). it is renowned for its high performance, fine-grained memory control, and suitability

for low-level system programming (Shajarian, 2020). It is a powerful systems language offering high

performance and control, though with a steep learning curve. It provides flexible abstractions and supports

both object-oriented and generic programming paradigms, making it ideal for embedded systems, game

engines, and real-time applications (Klepl et al., 2024). Despite these strengths, C++ can be complex and

error-prone, especially in memory management and concurrent multithreaded programming (Podkopaev et

al., 2016), and lacks the rapid prototyping ease of higher-level languages like Python.

C is a foundational language that powers everything from OS kernels to embedded systems. It was

developed by Dennis Ritchie at Bell Labs in 1972 (Kernighan & Ritchie, 1988). It is characterized by its

minimalistic syntax, which offers powerful low-level capabilities but often comes at the expense of

readability and safety, especially for novice programmers. Its design emphasizes performance and

efficiency, allowing direct memory access and close hardware interaction, making it a staple in systems

programming (Krishnamurthi & Fisler, 2019) and embedded systems (Kandemir et al., 2004). C is statically

typed, ensuring type safety at compile time, yet offers manual memory management, which, while flexible,

increases the risk of errors such as buffer overflows and memory leaks (Butt et al., 2022). These

characteristics make C ideal for performance-critical applications but demand rigorous discipline in

software engineering practices.

C# was designed by Microsoft as an answer to Java and follows the C-like syntax. It is part of the .NET

framework and was created by Anders Hejlsberg and first released in 2000 (Hejlsberg et al., 2010). C#

combines high readability with modern object-oriented design, making it accessible to developers while

supporting scalable, maintainable applications (Code Maze, 2023). Its static typing provides strong

compile-time type checking, reducing runtime errors and enabling more robust codebases (Alomari et al.,

2015). C# also features automatic garbage collection, which abstracts memory management and reduces

risks like memory leaks and dangling pointers common in lower-level languages (Michaelis, 2018). Its

asynchronous programming model using async/await and robust threading APIs further enhance its

suitability for scalable applications. These characteristics make C# a reliable choice for enterprise and cross-

platform development.

Java is a high-level programming language that follows the object-oriented paradigm in spirit and form. It

was created by James Gosling at Sun Microsystems (now Oracle Corporation) in 1995 (Gosling, 2000). It

is a statically typed, object-oriented programming language designed for clarity, reliability, and cross-

platform portability. Its syntax is verbose but readable, supporting robust structure and maintainability in

enterprise-grade applications (Varma, 2020). Java's automatic garbage collection eliminates the need for

manual memory management, reducing memory-related errors and promoting safer development practices

(GeeksforGeeks, 2022). The Java Virtual Machine (JVM) allows compiled Java bytecode to run on any

platform, cementing Java’s reputation for “write once, run anywhere” portability (Arnold et al., 2000).

Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

286

Modern Programming Language Comparison

A comparative Matrix is often used to compare characteristics when listing items side by side. In the

computing field, a comparative matrix has multiple uses. For example, it can be used to compare two or

three machines. While the first column lists a machine's features, the rows list the different machines being

compared. As the common saying goes, “comparing apples to apples,” a summary matrix can be used to

compare similar products from different brands.

Next, a comparative matrix of programming language features vs. programming language is presented. This

table was constructed primarily by referring to practitioner research through Google Search and other search

engines. The motivation for this was that languages keep evolving, and feature discussion makes it to

practitioner literature way earlier than it makes it to academic research. Table 2 below shows the matrix

that we intend to fill in this study.

Table 2. Matrix for the programming languages and characteristics of modernity

Criteria Python C++ C C# Java

Readability High – Clean,

English-like

syntax.

Moderate –

Verbose but

expressive.

Low –

Minimal

abstraction,

terse.

High – Clear,

modern

syntax.

High –

Verbose but

readable.

Strongly Typed Yes (Dynamic) –

Types enforced at

runtime.

Yes (Static) –

Compile-time

checking.

Yes (Static) –

Strict but

low-level.

Yes (Static) –

Strong

compile-time

Yes (Static) –

Robust type

system.

Functional

Prog

Supported –

Enhanced support

(`map`, `lambda`).

Partial –

Functional

constructs exist.

No – Very

low-level, no

FP constructs.

Supported –

LINQ and

lambdas.

Supported –

Streams and

lambdas.

OOP Yes – Supports

classes and

inheritance.

Yes – Full OOP

with multiple

paradigms.

No –

Procedural

only.

Full –

Designed with

OOP in mind.

Full – Strong

OOP and

interfaces.

Parallelism GIL-limited –

Multiprocessing

workaround.

Strong – Threads

and concurrency

libraries.

Manual –

Requires

threads.

Strong –

Native async

and threading.

Strong –

Threads and

concurrency

Garbage

Collection

Yes – Automatic

memory

management.

No – Manual

allocation/deallo

cation.

No – memory

managed

manually.

Yes – Modern

GC with

tuning options.

Yes –

Efficient,

proven GC.

Interoperability Strong – Works

with C/C++, Java,

etc.

Moderate – Can

link to C libs,

hard setup.

Moderate –

Limited

otherwise.

.NET/COM/et

c. – Interop via

runtime.

Strong – JNI,

multiple

toolkits.

Tooling &

Ecosystem

Excellent – IDEs,

linters, package

tools.

Excellent –

Mature

compilers and

debuggers.

Good –

Stable

compilers.

Excellent –

Visual Studio,

NuGet, etc.

Excellent –

Mature and

broad

ecosystem.

Modular Excellent –

Modules,

packages, venvs.

Excellent –

Header files and

libraries.

Weak – only

Header

inclusion

Excellent –

Namespaces,

assemblies.

Excellent –

Packages and

modules.

Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

287

Criteria Python C++ C C# Java

Secure Moderate – Relies

on practices and

libs.

Manual – Must

handle memory

and checks.

Manual –

High risk of

buffer

overflows.

Strong – Type

safety and

runtime

checks.

Strong – JVM

handles many

security

concerns.

Performance Slower –

Interpreted and

high-level.

Very High –

Near hardware-

level speed.

Very High –

Fast and

lightweight.

High –

Compiled to

efficient

bytecode.

High – JIT-

compiled and

scalable.

Cross-Platform Excellent – Works

everywhere.

Excellent – Wide

compiler

support.

Excellent –

Ubiquitous

support.

Good – .NET

Core is cross-

platform.

Excellent –

Works

everywhere.

Conclusion and Recommendation

If one considers the matrix above, with the intention of choosing a modern programming language amongst

the top five programming languages from the TIOBE April 2025 ranking (TIOBE Software, 2025), then it

is clear that no single programming language may excel at everything. This is understandable. If there were

one single language, then we would see the domination of that one single programming language in the

application development world, and perhaps there would not be a need to do an examination like this

manuscript has aimed to do.

The choice of language may boil down to the learning objective of a course and the class level. If the

objective is to teach it in a class with a population of students using Windows and Mac, then one may rule

out C# due to its Windows heritage. There do not seem to be any formal studies or statistics on this. Based

on the authors' anecdotal experience, about 50% of the students’ personal machines are Macs. While C#

may be used on a Mac using Visual Studio Code, the full capabilities of the language may only be harnessed

on a Windows OS. We may rule out the use of C# based on the interoperability criterion unless the use is

restricted to introductory courses at a university level.

Both C++ and C use manual garbage collection. While empowering developers, manual memory

management introduces significant risks of memory leaks and security risks if it is not done correctly. The

languages may be used in higher-level courses where the objective is to make system-level software that is

efficient and fast. Both languages shine where the software performance requirements are high. Both may

also be employed to teach students the importance of memory management and writing optimized code.

Both Python and Java are good choices of languages when considering a spectrum of courses ranging from

introductory to advanced. One may start with Python for good readability and ease of programming due to

its interpreted nature and may switch to Java to reinforce the knowledge of Object-Oriented Concepts (Ali

et al., 2023). The reason for selection is the strong object orientation of Java and the ability to map the

concepts of abstraction, encapsulation, polymorphism, and inheritance directly to the language constructs

(Ali et al., 2023). Both are mainstream programming languages, scoring well on all the attributes discussed

in Table 2. Both may be characterized as modern programming languages.

If the objective is to give students a quick start with a reduced learning curve and basing the whole

curriculum on one language, then the definitive recommendation would be Python. Python has excellent

readability and is easy to start with. Students in different disciplines and those desiring to gain different

levels and streams (data analytics vs. web development, etc.) of expertise can do so with its rich eco-systems

Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

288

of libraries and support for all features of a modern language. Python is open source and currently is not

under the control of any organization, unlike Java, which Oracle Corporation now owns. Several versions

of different Java Development Kits (JDKs) exist today, including an open-source version. Due to the open-

source nature of the language and the associated free IDEs like Spyder and Jupyter Lab, entry into the

language is easy. While not a consideration related to a modern programming language, the available

knowledge base of solutions, free training, and artificial intelligence support ensures that students have

many resources available to build up their knowledge in different features of a modern programming

language.

Python, as the programming language of choice, currently has much momentum. It has held the top position

in the TIOBE Programming Community Index since October 2021 (TIOBE Software, 2025). It has a rich

ecosystem of libraries that allows one to do tasks without writing everything from scratch, including

embedded programming. It was the TIOBE’s programming language of the year in 2024 (TIOBE Software,

2025). The conclusion that can be drawn here is that if teaching one programming language in a course for

“Modern Programming Language”, that programming language should be Python.

At the same time, what qualifies as a “modern” programming language can vary across educators, students,

and industry professionals. Future research could investigate these differing perceptions through surveys or

focus groups to arrive at a more user-informed understanding of modernity in programming education.

Such insights could help refine curriculum design and complement the matrix-based evaluation presented

in this study.

However, despite its many advantages, Python does have limitations—most notably, its interpreted nature,

which makes it less suitable for performance-critical applications. Although Python can be compiled for

specific platforms, languages like C++ and Java may be more appropriate for tasks that demand higher

execution speed or efficient memory use, such as embedded systems. In this context, educators might use

Python to introduce fundamental programming concepts due to its simplicity and readability, and then

gradually transition students to more performance-oriented languages. Python, in this way, serves as a

practical and accessible entry point before students move on to mastering more complex and resource-

efficient programming tools.

References

Ali, A., Chaudhary, P., & Wibowo, K. (2023). Considerations for updating programming courses. Issues in

Information Systems, 24(2). DOI: https://doi.org/10.48009/2_iis_2023_112

Ali, A., & Smith, D. (2014). A debate over the teaching of a legacy programming language in an information

technology (IT) program. Journal of Information Technology Education: Innovations in Practice,

13,111-127. DOI: https://doi.org/10.28945/2088

Alomari, Z., Halimi, O. E., & Sivaprasad, K. (2015). Comparative Studies of Six Programming Languages.

arXiv.

Appiah, F. (2021). Data Structures in Leelus Programming Language: A Research. ScienceOpen Preprints.

Arnold, K., Gosling, J., Holmes, D., & Holmes, D. (2000). The Java programming language (Vol. 2).

Reading: Addison-wesley.

https://doi.org/10.48009/2_iis_2023_112
https://doi.org/10.28945/2088

Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

289

Bekkhus, M., & Arvidsson, L. (2020). Resource utilization and performance: A comparative study on

mobile crossplatform tools.

Butt, M. A., Ajmal, Z., Khan, Z. I., Idrees, M., & Javed, Y. (2022). An in-depth survey of bypassing buffer

overflow mitigation techniques. Applied Sciences, 12(13), 6702.

Chatterjee, S., Liu, C. L., Rowland, G., & Hogarth, T. (2024). The impact of ai tool on engineering at anz

bank an empirical study on github copilot within corporate environment. Software Engineering.

https://doi.org/10.5121/csit.2024.140702

Code Maze. (2023, October 3). 22 C# best practices. https://code-maze.com/csharp-best-practices/

DeVito, Z., Ansel, J., Constable, W., & Suo, M. (2021). Using Python for model inference in deep learning.

arXiv. https://arxiv.org/abs/2104.00254

Đurđev, D. (2024). Popularity of programming languages. AIDASCO Reviews, 2(2), 24-29.

Fallucchi, F., & Gozzi, M. (2024). Puzzle Pattern, a Systematic Approach to Multiple Behavioral

Inheritance Implementation in Object-Oriented Programming. Applied Sciences, 14(12), 5083.

GeeksforGeeks. (2022). Java Memory Management. GeeksforGeeks. https://www.geeksforgeeks.org/java-

memory-management/

Gosling, J. (2000). The Java language specification. Addison-Wesley Professional.

Hejlsberg, A., Torgersen, M., Wiltamuth, S., & Golde, P. (2010). C# Programming language. Addison-

Wesley Professional.

Henning, M. (2004). A new approach to object-oriented middleware. IEEE Internet Computing, 8(1), 66-

75.

Julia Computing. (2024). The Julia programming language. JuliaLang.org. https://julialang.org/ Kandemir,

M., Ramanujam, J., Irwin, M. J., Vijaykrishnan, N., Kadayif, I., & Parikh, A. (2004). A compiler-

based approach for dynamically managing scratch-pad memories in embedded systems. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23(2), 243-260.

Kernighan, B. W., & Ritchie, D. M. (1988). The C programming language. prentice-Hall.

Khwaja, A. A., Murtaza, M., & Ahmed, H. F. (2019). A security feature framework for programming

languages to minimize application layer vulnerabilities. Security and Privacy, 3(1).

https://doi.org/10.1002/spy2.95

Klepl, J., Šmelko, A., Rozsypal, L., & Kruliš, M. (2024). Abstractions for C++ code optimizations in

parallel high-performance applications. Parallel Computing.

https://doi.org/10.5121/csit.2024.140702
https://www.geeksforgeeks.org/java-memory-management/
https://www.geeksforgeeks.org/java-memory-management/
https://julialang.org/
https://doi.org/10.1002/spy2.95

Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

290

Krishnamurthi, S., & Fisler, K. (2019). 13 Programming Paradigms and Beyond. The Cambridge handbook

of computing education research, 377.

Li, Y., Tan, W., Lv, Z., Yang, S., Payer, M., Liu, Y., & Zhang, C. (2022). PACSan: Enforcing Memory

Safety Based on ARM PA. arXiv preprint arXiv:2202.03950.

Michaelis, M. (2018). Essential C# 7.0. Addison-Wesley Professional.

Mittal, S., & Vetter, J. S. (2014). A survey of methods for analyzing and improving GPU energy efficiency.

ACM Computing Surveys (CSUR), 47(2), 1-23.

Ogli, O. K. H. (2024). PYTHON AND THE EVOLUTION OF PROGRAMMING PARADIGMS: A DEEP

DIVE INTO VERSATILITY. WORLD OF SCIENCE, 7(12), 49-55.

Oracle. (2015). The Java® Language Specification, Java SE 8 Edition. Oracle.

https://docs.oracle.com/javase/specs/jls/se8/html/index.html

Ortín, F. (2011). Type inference to optimize a hybrid statically and dynamically typed language. The

Computer Journal, 54(11), 1901-1924. https://doi.org/10.1093/comjnl/bxr067

Plieskatt, J., Rinaldi, G., Brindley, P. J., Jia, X., Potriquet, J., Bethony, J., & Mulvenna, J. (2014).

Bioclojure: a functional library for the manipulation of biological sequences. Bioinformatics,

30(17), 2537-2539.

Podkopaev, A., Sergey, I., & Nanevski, A. (2016). Operational Aspects of C/C++ Concurrency. arXiv

preprint.

Pruijt, L., Wiersema, W., Werf, J. M. E. M. v. d., & Brinkkemper, S. (2016). Rule type based reasoning on

architecture violations: a case study. 2016 Qualitative Reasoning About Software Architectures

(QRASA), 1-10. https://doi.org/10.1109/qrasa.2016.7

Rashed, A., Yousif, B., & Samra, A. S. (2016). Review of FPD'S Languages, Compilers, Interpreters and

Tools. Int. Journal of Novel Research in Computer Science and Software Engineering, 3(1), 140-

158.

Ryoo, S., Rodrigues, C. I., Stone, S. S., Stratton, J. A., Ueng, S. Z., Baghsorkhi, S. S., & Hwu, W. M. W.

(2008). Program optimization carving for GPU computing. Journal of Parallel and Distributed

Computing, 68(10), 1389-1401.

Salceanu, A. (2018). Julia Programming Projects: Learn Julia 1. x by building apps for data analysis,

visualization, machine learning, and the web. Packt Publishing Ltd.

Santos, J. (2023). Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in Python.

Universidade NOVA de Lisboa. https://run.unl.pt/bitstream/10362/164325/1/Santos_2023.pdf

https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://doi.org/10.1093/comjnl/bxr067
https://doi.org/10.1109/qrasa.2016.7

Issues in Information Systems
Volume 26, Issue 2, pp. 281-291, 2025

291

Setiawan, I., Maryono, D., & Basori, B. (2019). The analysis of software source code readability: Case

study at education of informatics and computer engineering study program of Sebelas Maret

University. Journal of Informatics and Vocational Education, 2(1), Article 1.

https://doi.org/10.20961/joive.v2i1.35695

Shajarian, S. (2020). The C++ Programming Language in Modern Computer Science. Tampere University.

Stroustrup, B. (2013). The C++ programming language. Pearson Education.

Szafarczyk, M. Ł., Ludynia, P., & Kukla, P. Ł. (2024). A Python library for efficient computation of

molecular fingerprints. arXiv. https://arxiv.org/abs/2403.19718

TIOBE Software. (2025, April). TIOBE index for April 2025. Retrieved March 4, 2025, from

https://www.tiobe.com/tiobe-index/

Urma, R., Orchard, D., & Mycroft, A. (2014). Programming language evolution workshop report.

Proceedings of the 1st Workshop on Programming Language Evolution.

https://doi.org/10.1145/2717124.2717125

Van Rossum, G., & Drake, F. L. (2003). Python language reference manual.

Van Rossum, G., & Drake, F. L. (2009). PYTHON 2.6 reference manual.

Varma, S. C. G. (2020). The Role of Java in Modern Software Development: A Comparative Analysis with

Emerging Programming Languages. International Journal of Emerging Research in Engineering

& Technology.

Wang, F., Song, F., Zhang, M., Zhu, X., & Zhang, J. (2018, August). Krust: A formal executable semantics

of rust. In 2018 International Symposium on Theoretical Aspects of Software Engineering

(TASE) (pp. 44-51). IEEE.

Yang, Z., Kung, F. Y. H., & Schneider, D. W. (2024). Individual preferences in multiple goal pursuit:

reconsidering the conceptualization and dimensionality of polychronicity. Applied Psychology,

74(1). https://doi.org/10.1111/apps.12575

Zhang, B., Liang, P., Zhou, X., Ahmad, A., & Waseem, M. (2023). Practices and challenges of using github

copilot: an empirical study. https://doi.org/10.48550/arxiv.2303.08733

https://doi.org/10.20961/joive.v2i1.35695
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/2717124.2717125
https://doi.org/10.1111/apps.12575
https://doi.org/10.48550/arxiv.2303.08733

