
Issues in Information Systems 
Volume 26, Issue 2, pp. 346-360, 2025 

346 

DOI: https://doi.org/10.48009/2_iis_127 

Perceptions and challenges of AI-driven code reviews: A qualitative 

exploration of developer experiences 

Sebastian Cataldi, Middle Georgia State University, scastaldi@gmail.com 

Abstract 

AI-driven code review tools represent transformative advances in software development, improving 

efficiency, productivity, and accuracy in code reviews. Despite these potential benefits, concerns about 

trust, reliability, and contextual comprehension persist, limiting their widespread adoption. This 

qualitative study examines the perceptions and challenges faced by software developers regarding AI-

driven code review tools. Through semi-structured and thematic analysis involving software developers, 

technical leads, and architects, the study identifies central themes, including trust in AI-generated 

recommendations, the impact on developer productivity, ethical considerations, and the need for 

contextual awareness. While participants acknowledge the efficiency gains and educational value 

provided by AI tools, skepticism remains regarding the tools' ability to interpret complex business logic 

and domain-specific scenarios. Participants advocate for enhancements in AI-driven tools, highlighting 

the need for improved contextual awareness, transparency, ethical integration, and seamless workflow 

integration. This research adds valuable empirical insights to ongoing discussions in software 

engineering literature, emphasizing AI-driven code reviews as complementary tools that augment 

human expertise in software development processes. 

Keywords: AI-driven code review, trust in AI, developer perceptions, developer experiences. 

Introduction 

AI-driven code review tools have emerged as promising innovations designed to improve the efficiency 

and effectiveness of software development processes. According to Vijayvergiya et al. (2024), modern code 

review is a collaborative practice where peers review code changes before they are merged into the version 

control system, ensuring compliance with best practices. Manual code reviews effectively identify defects, 

enforce coding standards, and facilitate knowledge sharing among developers (Tufano et al., 2021; Rasheed 

et al., 2024). However, with increasing software complexity and larger projects, maintaining thorough and 

frequent manual reviews becomes increasingly challenging. To address this challenge, AI-driven tools have 

been developed to automate key aspects of code review, including the detection of code smells, which are 

subtle indicators of potential design flaws or deeper issues, the recommendation of refactoring actions, and 

the prediction of errors based on historical patterns (Almeida et al., 2024; Gerede & Mazan, 2018). 

Despite their potential, adoption of these AI-driven code review tools remains slow. Developers express 

skepticism concerning reliability, contextual accuracy, and ethical considerations associated with AI-
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generated feedback (Bird et al., 2023; Ernst & Bavota, 2022). A recurring concern is whether AI can 

effectively comprehend and handle the nuances of business logic and project-specific contexts, which are 

critical to meaningful code assessments beyond superficial issues like syntax errors (Bird et al., 2023). 

Addressing these perceptions and challenges is essential to enhancing trust and integration of AI-driven 

tools into development workflows. 

 

This qualitative study investigates software developers' perceptions and challenges associated with AI-

driven code review tools. Through semi-structured interviews and thematic analysis, this research explores 

developers' experiences to identify key factors influencing their trust, acceptance, and integration of AI 

technologies in established development workflows. This investigation provides valuable insights into the 

strengths, limitations, and potential roles of AI-driven code review tools, emphasizing their capacity as 

complementary aids rather than replacements for human reviewers. This study contributes to enhancing the 

future development, adoption, and effective use of AI in software engineering contexts by addressing the 

following research question: 

 

RQ1: What are the perceptions and challenges experienced by developers when using AI-driven code 

review tools? 

 

Literature Review 

 

Modern Code Review (MCR) plays a crucial role in maintaining and enhancing the security and quality of 

software. The OWASP Code Review Guide (OWASP Foundation, Inc., 2017) provides a comprehensive 

framework for secure code reviews, emphasizing their integration into the software development life cycle 

(SDLC) to identify and mitigate vulnerabilities early, thus enhancing application security. The guide 

advocates code reviews to promote security awareness and responsibility among development teams, 

facilitating knowledge sharing and skill development within organizations, leading to more secure software 

products. Furthermore, Khleel and Nehéz (2020) explore the role of code reviews, contrasting formal 

inspections with modern code reviews (MCR). While formal inspections are thorough, their cost and 

rigidity make them less suitable for agile environments. In contrast, supported by tools, MCR offers a 

flexible, collaborative approach that improves review efficiency and software quality. The study 

underscores optimizing code review processes by considering technical and non-technical factors to 

enhance collaboration and learning.  

 

Badampudi et al. (2023) also provides a comprehensive survey of MCR practices, proposing a research 

agenda to align academic research with industry practices, thereby enhancing the effectiveness and 

efficiency of MCR processes. The authors emphasize that MCR practices are essential for improving code 

quality, reducing post-delivery defects, and facilitating knowledge sharing among developers. Furthermore, 

Doğan and Tüzün (2022) identify prevalent code review smells in open-source software (OSS) projects, 

which impact software quality and development efficiency. Addressing these issues can reduce technical 

debt and improve code review practices, software quality, and collaboration. Finally, Afzali et al. (2023) 

highlight vulnerabilities in modern web-based code review systems due to inadequate integrity 

mechanisms, stressing the importance of code reviews in ensuring software quality and security. 

 

Integrating Artificial Intelligence (AI) 

Recent studies have emphasized the transformative impact of AI and machine learning on improving the 

efficiency and quality of code reviews. For instance, Gerede and Mazan (2018) explored how predictive 

models can determine whether a proposed code change is likely to require revisions. Their findings suggest 

that such models can help streamline the review process, minimize the number of review iterations, and 

enhance developer satisfaction by offering actionable insights before the review even begins. 
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Building on these advancements, Pejic et al. (2023) explore enhancing pull request recommendation 

systems, particularly in large-scale repositories with extensive developer involvement. Their findings 

highlight the importance of optimizing reviewer recommendations to manage large-scale repositories 

effectively, thus supporting better management of reviewer workloads and improving review process 

efficiency. Additionally, Turzo et al. (2023) propose a novel approach to improving code review analytics 

by automatically classifying reviewer comments. They developed a deep neural network model that 

incorporates code context, comment text, and code metrics to categorize review comments into five high-

level groups. This classification system helps prioritize more critical feedback, thereby increasing the 

efficiency and overall effectiveness of the review process. 

 

In a related study, Yin et al. (2023) address the growing complexity and volume of code reviews by 

introducing an automated model that integrates program structure and code sequences for enhanced 

learning. Their approach uses a program dependency graph serialization (PDG2Seq) algorithm to transform 

the structural elements of the code into a unique graph-based sequence, preserving both the semantic and 

structural characteristics of the program. The study underscores the importance of maintaining contextual 

information within analysis models and contributes to the development of more robust tools for managing 

large-scale and complex software projects. 

  

Furthermore, Zydroń and Protasiewicz (2023) explore the automation of code review processes to improve 

efficiency and accuracy in large-scale software development projects. They highlight the challenge of 

manually assigning reviewers to pull requests and propose automated techniques utilizing machine learning 

and social network analysis to recommend suitable reviewers. The results indicate that the proposed 

automated review system can enhance efficiency and accuracy in code review processes. Integrating natural 

language processing (NLP) and machine learning techniques, such as pre-trained models such as 

ChatGPT4, enhances review annotation and accuracy. These findings suggest that automated review 

systems can increase transparency and accountability, positively impacting project outcomes (Zydroń & 

Protasiewicz, 2023).  

  

In a comprehensive study, Almeida et al. (2024) explore the application of Artificial Intelligence (AI) in 

code review processes to enhance the quality and efficiency of software development. Their research 

demonstrated significant improvements in review efficiency and effectiveness. AICodeReview, a tool 

developed by the authors, reduced review time, detected more code smells, and facilitated more effective 

refactoring compared to manual reviews. These findings support the continued development and integration 

of AI-driven tools in software development workflows, emphasizing the importance of combining 

automated tools with human expertise for optimal outcomes in code reviews. Integrating AI-based 

techniques in code review processes offers significant potential for improving overall software quality and 

development efficiency (Almeida et al., 2024).  

  

Finally, Baumgartner et al. (2024) present an AI-driven pipeline designed to address data clumps in 

software repositories. Data clumps, or variables frequently appearing together, indicate poor code structure 

and pose maintenance challenges. The study shows that by integrating LLMs like ChatGPT, the pipeline 

provides semantic insights that improve refactoring accuracy, address maintenance challenges associated 

with data clumps, and reduce technical debt. The automated refactoring process enhances overall code 

quality and maintainability. The study concludes that combining AI-driven techniques with human 

expertise results in more effective refactoring processes, highlighting the potential of AI in transforming 

software maintenance practices (Baumgartner et al., 2024). 
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Ethical Considerations 

While the above research demonstrates substantial advancements in modern code review practices, ethical 

considerations continue to represent significant challenges that require further investigation. Trust, 

reliability, and contextual accuracy in AI-driven development environments (AIDEs) is crucial for their 

effective and ethical integration into software development. Ernst and Bavota (2022) discuss the emergence 

of AIDEs and their transformative potential in software engineering, exemplified by tools like GitHub 

Copilot, which use large language models such as Codex to automate routine coding tasks and enhance 

developer productivity through real-time code suggestions. Complementing this discussion, Bird et al. 

(2023) underscore the necessity of trust in AI-generated code and ethical considerations to adopt these tools 

effectively. Their research calls for future studies to enhance the reliability, contextual accuracy, and ethical 

implications of AI-powered programming tools, ensuring they complement developers' workflows and 

contribute positively to the software development process. Developers must balance the benefits of AI 

suggestions with potential risks, such as reduced code comprehension and increased security vulnerabilities. 

The integration of AI in software development underscores the need for new skills, particularly in code 

review and validation, and understanding the dynamics between developers and AI tools is essential for 

optimizing their use in real-world settings. 

 

Human Oversight 

The evolving landscape of code review processes highlights the interaction between automated tools and 

human oversight. Whether through peer reviews in distributed environments, automated task integration, 

or the use of advanced AI models, the emphasis remains on enhancing efficiency and effectiveness while 

maintaining the critical role of human expertise. Dos Santos and Nunes (2018) investigate the effectiveness 

of peer code review in distributed software development (DSD) using objective data from code repositories 

and subjective data from developer surveys. The study emphasizes the importance of considering technical 

and non-technical factors in DSD. While automated tools enhance the review process, they cannot replace 

the need for active human participation. The balance between review thoroughness and efficiency is critical, 

especially in DSD contexts. By combining empirical data and subjective insights, the study provides a 

comprehensive understanding of code review effectiveness, highlighting the nuanced requirements of peer 

code reviews in distributed environments (Dos Santos & Nunes, 2018). In a related study, Baumgartner et 

al. (2024) demonstrate how the automated refactoring process enhances overall code quality and 

maintainability. Their findings underscore that combining AI-driven techniques with human expertise 

results in more effective refactoring processes, highlighting AI's potential to transform software 

maintenance practices (Baumgartner et al., 2024). 

  

The literature illustrates significant advances in software quality facilitated by Modern Code Review 

(MCR) and AI-driven tools. According to Keary (2017), integrating structured security-focused code 

review practices into the software development life cycle (SDLC) enables early vulnerability detection, 

enhances software security, and fosters collaborative knowledge sharing among development teams. Khleel 

and Nehéz (2020) highlight MCR's adaptability for agile environments compared to traditional inspections. 

AI tools like AICodeReview and GitHub Copilot further enhance review efficiency and developer learning 

but raise ethical concerns around transparency and trust (Ernst & Bavota, 2022; Bird et al., 2023). Human 

oversight remains critical, particularly in complex and distributed contexts (Dos Santos & Nunes, 2018; 

Baumgartner et al., 2024). While AI-driven code reviews have transformative potential, their success 

depends on ethical integration and a balanced partnership with human expertise.  

 

Furthermore, Turzo (2023) proposes improving modern code reviews (MCR) effectiveness by automating 

tasks, such as reviewer selection and bug identification, to reduce time and resources spent. Integrating 

these models with static analysis tools can identify and suggest potential solutions for code defects that 

might otherwise be missed. This approach aims to streamline code reviews, making them more efficient 
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while relying on human oversight to ensure the quality of the automated tools. Furthermore, Kotsiantis et 

al. (2024) explore AI-assisted programming, focusing on utilizing code embeddings and transformers to 

enhance software development tasks. These technologies reduce manual coding efforts and minimize 

errors, making software development more efficient. Kotsiantis et al.(2024) highlights the importance of 

addressing the limitations and challenges of current AI technologies. It emphasizes the need for 

collaboration between AI researchers and software developers to advance AI-assisted programming, 

suggesting that these tools will be widely adopted in integrated development environments (IDEs), playing 

a crucial role in the evolution of software development. 

 

 

Methodology 

 

This study employs a qualitative research design to explore the perceptions and challenges faced by 

software developers when using AI-driven code review tools. Thematic analysis was chosen as the 

analytical method because of its strength in capturing complex and nuanced experiences that are often 

missed by quantitative approaches (Creswell, 2013).  For data analysis, we employed an inductive thematic 

analysis using Quirkos. The process began with initial open coding of interview transcripts. Codes were 

then grouped and refined iteratively through collaborative discussions among the researchers. Using 

Quirkos to identify co-occurring themes and patterns, which were validated across participants to ensure 

conceptual coherence. Quirkos' interactive interface facilitated theme development through visual mapping 

and clustering of related codes. This helped identify relationships among themes and supported iterative 

refinement throughout the coding process. 

 

Instrument 

The instrument consisted of a semi-structured interview guide with open-ended questions organized into 

six sections. Section one focused on background and experience, section two explored perceptions, section 

three addressed challenges, section four gathered suggestions for improvement, section five examined 

future and ethical considerations, and section six included closing questions. All interviews were conducted 

live via Microsoft Teams. This approach enabled in-depth research and proved effective in detailing the 

experiences of participants and understanding the context in which these experiences occurred (Guest et 

al., 2006). 

 

Sampling 

Semi-structured interviews were conducted with 10 participants, including software developers (n = 3), 

senior developers (n = 4), team leads (n = 2), and a software architect (n = 1). All participants had been 

using AI-driven code review tools for at least six months. The sample size was determined based on the 

principle of data saturation, which is reached when no new themes or insights emerge from additional 

interviews (Guest et al., 2006). This approach supports the collection of rich, meaningful data while 

maintaining research efficiency. 

 

Data Collection 

The data was analyzed using thematic analysis, a method for identifying, analyzing, and reporting patterns 

in qualitative data (Creswell, 2013). The interviews were transcribed and the initial codes were generated 

systematically throughout the dataset, reviewed and categorized into themes. The themes were then refined 

and validated to reflect the essence of the data in relation to the research questions. A thematic map was 

also created to illustrate the relationship between themes (Creswell, 2013). 
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Participants were selected using purposive sampling to ensure a diverse representation of roles in software 

development, including junior developers, team leads, and software architects, aimed to capture a broad 

range of perspectives on AI-driven code review tools. 

 

 

Results 

 
To address the research question, this study conducted a qualitative analysis of interview data from 10 

participants. The analysis was performed using Quirkos, a qualitative data analysis tool that facilitated the 

systematic coding, organization, and visualization of findings. This process enabled a detailed exploration 

of developers' perceptions and the challenges they face when using AI-driven code review tools. The 

analysis identified six key themes: efficiency, learning, trust, challenges, collaboration, and future 

expectations, providing a comprehensive understanding of how these tools influence software development 

workflows. 

 

Table 1. Themes 

Title Total Codes 

Learning and Knowledge  2 

Educational Tool 7 

Challenges 3 

Hallucinations 4 

Context Awareness 5 

Code Consistency 6 

Data Privacy Issues 3 

Bias 1 

Incorrect or Irrelevant Feedback 14 

Impact on Developer Skills 4 

Trust 22 

AI vs. Traditional Code Reviews 6 

Efficiency and Speed 7 

Potential to Evolve 15 

Transparency 6 

Ethics and Security Concerns 11 

Human-AI Collaboration 14 

Skepticism 13 

Reliability in Code Review 14 

Lack of Context Understanding 17 

Future Expectations and Improvements 20 

Productivity 19 

Reduce Workload 12 

Integration in Workflows 5 

Total Codes 230 
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The thematic analysis revealed six central themes: efficiency and productivity, learning and knowledge 

enhancement, trust and reliability, challenges and limitations, collaboration and workflow integration, and 

future expectations. Figure 1 highlights the most frequently discussed terms, visually reinforcing the 

prominence of these themes in the data (Appendix B, Figure 1). 

 

Efficiency and Productivity  

Participants highlighted that AI-driven tools reduced manual code review time and allowed focus on 

complex tasks. For example, one participant explained, “Compared to humans, the AI is very thorough 

when looking at the code base and the changes within a pull request” (Appendix A, Participant 01). Another 

participant emphasized time savings as a key benefit, “This automated code review process saves a lot of 

our time... it is pretty neat and pretty good” (Appendix A, Participant 05). Similarly, one developer 

observed, “It goes to that review instantly within 5 minutes... improving productivity for one developer and 

the whole team” (Appendix A, Participant 08). The thoroughness of AI in detecting errors and suggesting 

improvements was a recurring theme, boosting productivity. Participants also noted that AI tools minimized 

human error, ensured consistency, and enabled faster development cycle iterations. This theme was 

especially relevant in agile development contexts, where fast iteration cycles and time-sensitive deliverables 

amplify the benefits of automation. 

 

Learning and Knowledge Enhancement  

Participants expressed that AI-driven code reviews reinforced coding principles and provided educational 

value through detailed explanations. As one developer described, “Having explained chunks of code is 

helping me learn at a faster pace than if I tried to go out and read articles” (Appendix A, Participant 02). 

Another noted, “It reinforces the fundamentals” when revisiting older code (Appendix A, Participant 01). 

A third participant shared, “My biggest interest... is learning more about the coding frameworks I’m 

working on” (Appendix A, Participant 02). This theme was prevalent, with many participants recognizing 

AI tools as ongoing learning aids that helped them adopt best practices. Additionally, participants 

highlighted that AI tools exposed them to alternative coding methods and encouraged them to stay updated 

with evolving standards. The guidance provided by AI tools was seen as particularly valuable for junior 

developers, providing mentoring support and accelerating their learning curve. 

 

Trust and Reliability  

While many participants acknowledged AI's reliability in detecting errors, they also expressed skepticism 

regarding its ability to understand complex business logic and project-specific contexts. For instance, one 

participant said, “It's around 85% to 90%. I cannot completely trust it because... it does not work as 

expected” (Appendix A, Participant 06). Similarly, one participant noted, “I haven't seen where it's blatantly 

incorrect, but I've seen irrelevant suggestions” (Appendix A, Participant 02). This shows that despite some 

perceived reliability, participants remained cautious. Developers consistently emphasized the importance 

of human oversight, advocating for a balanced approach in which AI acts as an assistant rather than a 

replacement. These concerns were particularly salient in projects with high business logic complexity, 

where developers relied more on domain knowledge than syntax-level correctness. Ethical concerns 

emerged prominently across interviews, particularly regarding data privacy and intellectual property. These 

concerns underscore the need for transparent data handling policies and clear boundaries on AI training 

data, aligning with calls for ethical accountability in enterprise AI tools (Bird et al., 2023). 

 

Challenges and Limitations  

A notable challenge identified by participants was the AI's struggle with business logic, leading to improper 

suggestions. As one participant explained, “These tools recommend deprecated features... it does not 

understand new features” (Appendix A, Participant 04). Another added, “The higher you go, the more 

context it loses” (Appendix A, Participant 01). A different developer pointed out, “Once you address some 
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comments... you might receive double the comments in return” (Appendix A, Participant 09). Contradictory 

feedback from AI tools created additional workload, and concerns about training data quality and ethical 

implications were often raised, highlighting widespread concerns. Developers reported that AI tools 

sometimes generated false positives, requiring careful review and offsetting some time-saving benefits. 

Ethical concerns included data privacy, bias in AI training models, and potential over-reliance on automated 

systems, which participants believed could undermine critical thinking and collaborative code review 

practices. 

 

Collaboration and Workflow Integration  

Participants had mixed experiences with AI tools. While some valued quick feedback that reduced reliance 

on human reviewers, others felt AI hindered peer discussions. One participant shared, “Whenever there is 

an issue, it tags the team member, and we usually collaborate and talk about that issue” (Appendix A, 

Participant 05). Another reflected, “The more we use it, the more ingrained it becomes in the workflow” 

(Appendix A, Participant 03). A recurring suggestion was improving AI's contextual awareness for better 

workflow integration. Participants also noted that AI tools could disrupt established review processes by 

introducing conflicting suggestions that required mediation. However, many acknowledged that AI tools 

streamlined repetitive tasks when integrated effectively, allowing human reviewers to focus on high-impact 

code assessments, thus enhancing team efficiency. 

 

Future Expectations  

Participants expected AI tools to continue as complementary aids to human reviewers, with hopes for 

improvements that would reduce manual intervention. As one participant envisioned, “In the future, it will 

just write a code and then give it to us... and then making sure it looks good” (Appendix A, Participant 05). 

Another shared, “Yes, it will evolve... we'll simply be inputting prompting with business requirements” 

(Appendix A, Participant 02). One participant noted, “I think it’s good, but I wouldn't rely solely on code 

reviews” (Appendix A, Participant 10). Several participants highlighted continuous training and adaptation 

of AI tools as essential, underlining the need for development. Participants also expressed optimism about 

the future of AI-driven code review tools, such as improved contextual understanding, adaptive learning 

from project-specific code bases, and enhanced security features. The need for customizable AI-driven code 

review tools tailored to specific project needs was also stressed, with participants hoping for more 

transparent and explainable AI operations to build trust and improve adoption. 

 

 

Discussion  

 
The results of this qualitative study contribute to the existing literature by highlighting both positive 

perceptions and ongoing challenges faced by developers when using AI-driven code review tools. 

Consistent with prior research, the participants acknowledged multiple advantages associated with 

integrating AI-driven tools, including enhanced efficiency, productivity, and opportunities for skill 

enhancement (Almeida et al., 2024; Rasheed et al., 2024; Tufano et al., 2021). Participants reported that 

AI-driven tools effectively reduced their workload by quickly identifying errors, suggesting relevant 

refactoring options, and automating repetitive tasks. These observations align closely with Almeida et al. 

(2024), who found that AI tools significantly reduced the time required for code reviews while improving 

overall code quality. Similarly, Gerede and Mazan (2018) demonstrated that AI-based predictive models 

increased review efficiency and improved developer satisfaction by proactively identifying code issues 

requiring review.  

  

However, despite these perceived benefits, the study findings underscore persistent skepticism among 

developers, particularly regarding AI's limitations in handling complex business logic and domain-specific 
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contexts. Participants expressed doubts about the AI tool’s ability to interpret deeper layers of contextual 

information, echoing concerns documented by Bird et al. (2023), who noted developers' reluctance to fully 

trust AI-generated suggestions due to perceived inadequacies in understanding intricate project-specific 

details. Ernst and Bavota (2022) further emphasized the importance of trust and reliability in AI-driven 

development environments, advocating that human oversight remains essential, especially when handling 

complex or sensitive software tasks.  

  

Moreover, ethical considerations emerged as a significant dimension shaping developer perceptions. 

Developers expressed concerns about data privacy, inherent biases in AI training datasets, and the risk of 

excessive reliance on automation, which could undermine the critical thinking and collaborative practices 

of developers. These ethical challenges mirror concerns discussed extensively in prior studies, including 

Baumgartner et al. (2024), who underscored the necessity of transparent and explainable AI 

recommendations to mitigate bias and promote accountability. The developers' apprehensions around 

ethical issues, particularly data privacy and bias, align with broader ethical discourses highlighted in recent 

literature (Bird et al., 2023; Ernst & Bavota, 2022).  

  

This study also reveals practical implications for improving AI-driven code review tools. Participants called 

for improvements in the contextual awareness and accuracy of AI tools, advocating for increased 

customization capabilities, transparency in recommendation processes, and seamless workflow integration. 

These findings are consistent with recommendations from the OWASP Code Review Guide (Keary, 2017), 

which emphasizes the integration of security best practices and transparency into software development 

processes. Furthermore, these findings align with studies by Pejic et al. (2023) and Zydroń and Protasiewicz 

(2023), which advocate for more contextually aware and customizable AI tools capable of adapting 

dynamically to specific project environments to optimize reviewer effectiveness and enhance overall 

software quality. These findings align with recent research emphasizing that AI systems should support 

rather than replace human judgment. Concerns about transparency and trust echoed throughout participant 

responses, reflecting broader themes in responsible AI design (Baumgartner et al., 2024). 

 

 

  

Participants also expressed future expectations for AI-driven code review tools, highlighting the need for 

continuous improvement in adaptive learning capabilities, better contextual awareness, and more robust 

integration into existing development workflows.). These expectations resonate with suggestions from 

Almeida et al. (2024) and Rasheed et al. (2024), who have recommended ongoing refinement of AI's 

capabilities through deeper contextual learning and integration into established human-driven processes.  

  

In summary, while the benefits of AI-driven code review tools in software engineering practices are 

recognized, there are still significant concerns about contextual understanding, trustworthiness, and ethical 

considerations. The current study reinforces the need for AI tools to evolve towards greater transparency, 

contextual sensitivity, and seamless integration into existing workflows, achieving a balanced partnership 

between automation and human expertise.  

 

To enhance the practical utility of AI-driven code review tools, designers should consider integrating 

contextual signals from project history, commit patterns, or developer role. Participants expressed a desire 

for explainable feedback mechanisms, such as linking suggestions to real-world code examples or 

highlighting rationale behind recommendations. Enabling this kind of transparency may not only improve 

adoption but also foster trust, especially in high-stakes or regulated development environments. 
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Conclusion 

 
This qualitative research explored the perceptions and challenges of software developers using AI-driven 

code review tools. The literature review highlighted existing knowledge regarding AI's ability to improve 

code review efficiency, productivity, and skills while underscoring prevalent concerns regarding trust, 

contextual understanding, and ethical implications (Almeida et al., 2024; Bird et al., 2023; Ernst & Bavota, 

2022; Tufano et al., 2021). 

 

Semi-structured interviews were conducted with software developers, technical leads and solution 

architects using thematic analysis. The thematic analysis revealed six key themes: efficiency and 

productivity, learning and knowledge enhancement, trust and reliability, challenges and limitations, 

collaboration and workflow integration, and future expectations. Participants acknowledged that AI-driven 

tools reduce repetitive tasks, increased productivity, and improved continuous learning. However, 

skepticism persisted regarding the tools' limitations in contextual understanding, ethical concerns, and 

reliability, underscoring the continued necessity of human oversight. 

 

The discussion aligned these findings with previous studies, highlighting persistent challenges related to 

trust, contextual understanding, and ethical considerations when integrating AI tools in software 

development (Bird et al., 2023; Ernst & Bavota, 2022). Consistent with research advocating for human 

oversight in AI-driven software engineering practices (Baumgartner et al., 2024), this study underscores 

the necessity of balanced human-AI collaboration rather than complete automation. 

 

In summary, this research provides evidence supporting a hybrid model, emphasizing the complementary 

role of AI-driven code review tools and human expertise. Future research should address AI limitations, 

especially contextual understanding and ethical transparency, aligning technological advances with ethical 

standards in software engineering. 
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Appendix A 

Selected Participant Quotes by Theme 

 

Efficiency and Productivity 

"Compared to humans, the AI is very thorough when looking at the code base and the changes within a pull 

request. The review could be of high quality, depending on how much time you dedicate." - Participant 01. 

 

"This automated code review process saves a lot of our time. The comments we are getting are good; 

sometimes there are hallucinations; otherwise, I think it is pretty neat and pretty good." - Participant 05. 

 

"Whenever we make any change, we commit anything, and it goes to that review instantly within 5 minutes. 

It returns the feedback that we can change it at the same time, improving productivity for one developer 

and the whole team." - Participant 08. 

 

"It helps us reduce the friction because another person may be unavailable for code reviews every time." - 

Participant 08. 

 

"I take AI tools advantage every day. My day-to-day development activities have been improved." - 

Participant 07. 

 

Learning and Knowledge Enhancement 

"I've learned a lot from using the AI-driven code review tools. Having explained chunks of code is helping 

me learn at a faster pace than if I tried to go out and read articles. It's huge." - Participant 02. 

 

"Even with the older code bases I wrote a couple of years ago, I'm back to them, making fixes and seeing 

everything I like. When the AI goes through it, it's like, this could have been done XYZ or a little bit better. 

It reinforces the fundamentals." - Participant 01. 

 

"My biggest interest in AI and code review is learning more about the coding frameworks I'm working on, 

so any additional capabilities it could have to teach the developer would be valuable to me." - Participant 

02. 

 

"It gives us more quick feedback rather than relying on the other developers. So this helps us reduce the 

friction." - Participant 08. 

 

Trust and Reliability 

"I believe that when it comes to trust, as well as code quality, code structure, and overall logic, it can be 

fully trusted. However, it cannot be trusted in the context of the application regarding what that pull request 

entails." - Participant 03. 

 

"It's around 85% to 90%. I cannot completely trust it because, in my experience, the code breaks when I try 

to implement the same right, and it does not work as expected." - Participant 06. 
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"They are reliable at finding small human errors... But for smaller things, like error handling and commit 

code logs, you have to check and see what it's doing for everything that's more about functional logic." - 

Participant 09. 

 

"I haven't seen where it's blatantly incorrect, but I've seen irrelevant suggestions. I think that might also be 

my opinion, having more context of the code." - Participant 02. 

 

"From what I've seen, I haven't noticed the tool suggesting anything that would introduce a vulnerability. 

However, sometimes it can nitpick about minor details." - Participant 10. 

 

Challenges and Limitations 

"These tools recommend deprecated features. Since the model was probably trained sometime in the past, 

it does not understand new features and doesn't yet fully understand the syntax." - Participant 04. 

 

"The higher you go, the more context it loses. It's very good for methods, functions, and classes, but adding 

a higher microservice level would be better. It loses some of that context." - Participant 01. 

 

"It does not understand the context. You will have to specify exactly whatever the output comes right. 

You'll have to modify it on top of it, and then you'll have to use it." - Participant 07. 

 

"The challenges specifically tied to my current work involve finishing up a pull request for refactoring an 

entire microservice... Once you address some comments and push your changes, you might receive double 

the comments in return." - Participant 09. 

 

"Sometimes, I see that it goes into hallucination. It keeps on telling you and giving you the same feedback." 

- Participant 08. 

 

Collaboration and Workflow Integration 

"One good thing we have noticed is that whenever there is an issue, it tags the team member, and we usually 

collaborate and talk about that issue." - Participant 05. 

 

"If we could use AI to verify facts continually and not have to rely on the human brain to recall what was 

said or what the truth is, I think that would be valuable for collaboration." - Participant 02. 

 

"The more we use it, the more ingrained it becomes in the workflow... Using ChatGPT, AI, RAG, and 

Copilot simultaneously has made the workflow significantly faster." - Participant 03. 

 

"We can ask other developers what they think of this feedback, how we can implement these suggestions, 

and how to improve these suggestions." - Participant 06. 

 

Future Expectations 

"In the future, it will just write a code and then give it to us, and then it is just a matter of plugging in and 

testing it and then making sure it looks good." - Participant 05. 

 

"Yes, it will evolve, and I expect that AI will eventually write all the code, and we'll simply be inputting 

prompting with business requirements." - Participant 02. 
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"I think it’s good, but I wouldn't rely solely on code reviews. I would use them to augment the team to 

identify potential gaps." - Participant 10. 

 

"I do see it becoming more accessible; it's moving really fast. It's just the way it's evolving. It's actually 

going to progress a lot faster." - Participant 09. 

 

"AI will be available in each tool. So AI will be invited to each of the developing tools they are working 

on." - Participant 07. 
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Appendix B 

 

Figures 

 

Figure 1. Word Cloud 

 
 


