
Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

43

DOI: https://doi.org/10.48009/2_iis_104

Mobile app for identifying recyclable items using a convolutional

neural network

George Stefanek, Purdue University Northwest, stefanek@purdue.edu

Kody Smart, Purdue University Northwest, smartk@purdue.edu

Mark Kadah, Purdue University Northwest, mkadah@pnw.edu

Eric Shelton, Purdue University Northwest, sheltoe@purdue.edu

Nathan Custin, Purdue University Northwest, ncustin@purdue.edu

Abstract

This project focused on developing a mobile app that could identify recyclable items and provide

instructions for recycling or disposal. The use of such an app can help in appropriately recycling items,

increasing the number of items that a household might recycle and improving the effectiveness and speed

of recycling at the recycling plant. To easily identify items, the app uses the phone’s camera to allow a

person to take a picture of an item. The first phase of the project created a mobile app that sends a photo

to a cloud server running a Convolutional Neural Network (CNN) that performs the classification. The

server application then looks up recycling instructions on a MySql database and sends back the instructions

to the mobile app. The mobile app also has a local version of the database so that items can be looked up

locally. A key focus of the project explored the public datasets that were available for recycling, trained

various mobile-oriented CNNs to determine their effectiveness using these public datasets, tuned

hyperparameters for optimum performance of each model, and selected the best CNN, dataset and

framework that could ultimately allow the app to be deployed natively on a mobile platform.

Keywords: neural network, CNN, machine learning, recycling, mobile app

Introduction

Recycling garbage is done routinely in many households; however, recycling is typically underutilized. A

report on present and future residential recycling in the U.S. (Appel, M. et al., 2024) states that 21% of

residential recyclables are being recycled even though 43% of households participate in recycling. The

study also finds that of those households that participate only 57% of recyclable material is put in recycling

containers which means that households are not fully participating. Some items such as cans, bottles, glass

items, and paper cartons are more obvious as recyclable items that can be appropriately put into a recycling

container and picked up by a garbage service. Other items particularly various plastics, rubber items,

metals, items that contained food, woven materials, paints, batteries, machines, televisions, computers, and

other electronic items may not be recyclable or have special instructions for recycling or disposal. When it

is unclear of how to dispose of an item, households may end up throwing items out with regular garbage.

Disposal and recycling instructions are typically posted on the recycling service website which require an

individual to use a computer or phone, navigate through the web pages and search for instructions which

mailto:stefanek@purdue.edu
mailto:smartk@purdue.edu
mailto:mkadah@pnw.edu
mailto:sheltoe@purdue.edu
mailto:ncustin@purdue.edu

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

44

makes it cumbersome and unlikely to be used when trying to quickly dispose of an item. This emphasizes

the need for better ways of communicating this information.

To improve the quantity of items that get recycled and encourage people to recycle, one approach is to use

technology to make it easier and quicker for households to determine what to do with an item. Inspiration

can be taken from existing recycling mobile apps such EcoScan, Scrapp, and GreenScanr that are used to

help people recycle items. Other mobile apps that use cameras to identify plants, birds, animals, bird calls,

etc. can also help in proposing a design for a recycling app that uses the camera to identify items. Typically,

with these types of apps the user opens the app and uses a phone’s camera to identify something of interest.

Some examples include “Seek” by iNaturalist (Seek by iNaturalist, n.d.), “PlantSnap” by PlantSnap

(PlantSnap, n.d.), and Merlin Bird ID (Merlin Bird ID, n.d.). Additionally, a machine learning model that

can detect recyclables of various shapes and states may be able to be applied in the recycling facility itself.

Problem Statement

The limitations that these apps may have are the ability to identify an item correctly when it is broken,

crumpled, obscured, dirty, in various orientations, and has a background or light condition that make it

more difficult to correctly identify. There exists a need for more robust data sets to overcome these issues.

Some of the existing apps require the models to run on a cloud server. Small models may be able to be run

natively on a mobile app, but larger models that have been trained with large datasets that include images

with the limitations mentioned above may perform better but may have to be hosted on the cloud to have

the processing power that may be required. Creating a mobile model that can have near real-time

performance natively on a mobile app yet provide high accurate classification rates of items in various

states would require experimentation with hyperparameters of the model and a dataset that is well balanced

at representing these items, but not overly large.

Literature Review

There are a few mobile apps that focus on recycling. There are two mobile apps called EcoScan. The first

EcoScan app uses an AI model developed with PyTorch with over 15,000 images to provide recognition of

recyclables with 94% accuracy and then directs users to nearby recycling locations using Google Maps and

provides tips for recycling (Scan, Recycle, Transform with EcoScan, n.d.). It also uses barcodes to identify

items. The second ecoScan app also takes a photo or scans the barcodes of an item and claims an accuracy

of 98% (EcoScan, n.d.). These apps also build-in gamification to try to help the user do more recycling.

The GreenScanr app (GreenScanr, (n.d.)) uses an AI model or barcodes to identify images of recyclable

items and provide information on material composition, weight, and carbon avoidance. The Scrapp app (8

out of 10 of us recycle incorrectly, (n.d.)) uses barcodes or manual search to get recycling instructions,

discover drop-off points and learn about zero-waste habits.

Other non-recycling apps that also use a mobile phone camera to identify things include the “Seek” app by

iNaturalist (iNaturalist, (n.d.)) which identifies wildlife, plants, and fungi by using the camera. The Seek

app uses computer vision algorithms to analyze the image and suggest possible identifications based on the

iNaturalist database (Iwane, T., 2019). The app used the TensorFlow deep learning framework with Nvidia

hardware to train the neural network on the iNaturalist database of images. These images have been labeled

by the site’s community of experts with approximately 4,000,000 verifiable observations vetted by experts

and represent 100,000 species (Gee, S., 2017). iNaturalist determined that having at least 20 research grade

observations was necessary to include a species in its model.

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

45

The Plantsnap mobile app (World Leading Plant Identification Technology, n.d.) uses AI and machine

learning to identify nearly any plant, using only a smartphone photo. When you open the app, it

immediately takes you to a camera view. Plantsnap uses the machine learning services of Imagga, a

company that provides cloud-based visual AI services using an API. The model is trained on 320,000 plants

which used a training set of 90 million images (Smith, T., 2019).

Merlin Bird ID developed by Cornell Lab of Ornithology uses machine learning to train models of bird

vocalizations and photos (Merlin Bird ID, n.d.). Merlin converts the audio into an image called a

spectrogram. The spectrogram plots sound frequencies that appear in the recording, as a function of time.

This spectrogram image is then fed into a modern computer vision CNN model. This model was trained to

identify birds based on 140 hours of audio containing bird sounds, in addition to 126 hours of audio

containing non-bird background sounds, like whistling and car noises. For each audio clip, a group of sound

ID experts from the Macaulay Library and the eBird community found the precise moments when birds

were making sounds and tagged those sounds with the corresponding bird species.

Most of the apps above used convolutional neural networks (CNN) for creating a machine learning model

trained on actual images of interest. The use of CNNs for image classification is supported by Lai (2019)

who compared the use of a SVM (Support Vector Machine) which is a traditional classifier with a CNN

which is a deep learning model. The SVM algorithm distributes learning samples into two different classes

in a high-dimensional space by linear classification.

The CNN was constructed as a three-layer model with layer 1 having 32 3*3 convolution kernels to collect

the feature information of the image. The image data was from the Mnist dataset which contained

handwritten digits. The digits have been size-normalized and centered in a fixed-size image (28 X 28). Of

the 70,000 images in the training set, 60,000 images were used for training and 10, 000 images for testing.

They found that the CNN performed better than the SVM achieving an image recognition rate of 98.85%

vs 93.92%.

Pak and Kim (2017) specifically reviewed different deep learning models including CNNs on how well

these models classified images. They looked at the results from several of the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) contents which are the largest object recognition contests held in recent

years. The contests used an image database of 15,000 images that can be downloaded from Kaggle. They

evaluated AlexNet, VGG, GoogLeNet, and ResNet. The AlexNet machine learning model consisted of a

network, which had 60 million parameters, eight layers, and had an error rate of 16.4% in the ILSVRC-

2012 contest.

The VGG machine learning model consists of 16 weight layers including thirteen convolutional layers with

a filter size of 3x3 and three fully connected layers and had an error rate of 7.3% which took second place

in ILSVRC-2014. The GoogLeNet model had 22 layers when counting only layers with parameters and

won the ILSVRC-2014 challenge with 6.7% error. The ResNet CNN network that was used consisted of

152 layers and won first place in ILSVRC-2015 with an error rate of 3.6%.

Additionally, Li (2022) reviewed literature to see how effective various deep learning techniques were to

medical image recognition. It was found that a CNN was used to identify and classify cervical examination

images with 89.1% accuracy on the test set. A CNN model was also used to classify breast density to

determine the risk of breast cancer with 98.8% effectiveness. Also, histopathological images of lung cells

were trained using a CNN model which was able to accurately distinguish diseased cells from normal cells

with an accuracy of 97.0%.

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

46

Research Questions

The use of a CNN for classifying images has been shown to have success in various applications and was

a good candidate for a deep learning model to be used in detecting recyclable waste. The research questions

in the development of this recycling app were: 1) identify image datasets that currently exist for recyclable

items, 2) train a CNN on these datasets and determine how well these datasets recognize recyclable items

and experiment with hyperparameter configuration to achieve better classification, 3) determine how well

this initial model classifies recyclable items that have some of the issues as stated in the problem statement

above, 4) determine what machine learning platforms that will support running the machine learning model

on a mobile device, 5) select a cloud service that can host the machine learning component, and 6)

determine if the initial dataset should be augmented with additional training examples to increase accuracy

of identification of items in various states.

Methodology

The methodology was to: 1) identify the technologies that can to be used for building the mobile app and

run a machine learning model natively on a mobile app, 2) choose the machine learning model, 3) select a

cloud environment and supporting technologies to also host the machine learning component, 4) define the

UI requirements for the mobile app, 5) find and select the initial datasets that could be used for recycling,

6) design the architecture for the app, 7) build an initial prototype app that uses the initial datasets and host

the machine learning and database components on the cloud to show a proof of concept, and 8) test how

well the app can classify various categories of recyclable items using pictures that do not include some of

the problems as identified in the problem statement. A future version of the mobile app will be created to

run the machine learning and database components natively on the mobile device. The standalone version

may need to be constrained by the machine learning model and size of the dataset on which the model is

trained for it to run responsively on a phone or tablet. Future work will augment the dataset with additional

pictures that include those as identified in the problem statement.

Mobile App Development Technologies

To reduce the amount of time it takes to develop apps that run on multiple operating systems such as

Android, iOS and Windows, a cross-platform development environment was selected. Out of the multiple

cross-platform development environments that are currently available such as Flutter, React, and MAUI,

the Microsoft MAUI cross-platform platform was selected. The MAUI platform was selected since it uses

C#, a full-featured language, as the underlying language to handle event processing and programming of

controls, uses XAML that can be used for building the front-end, and has access to many libraries that can

be used with C#. Alternatively, a Blazer version of MAUI can be used to develop an app where the user-

interface is built on top of HTML/CSS.

Additionally, Flask (Flask, 2010) was used to simplify communication to the machine learning application

that was initially hosted on the cloud. Flask is a lightweight web application framework written in Python

that does not require particular tools or libraries and is based on the Werkzeg Web Server Gateway Interface

(WSGI) toolkit and the Jinja2 template engine. WSGI is the specification of a common interface between

web servers and web applications. Also, with ‘webview’ technology, a Flask web app can run in a native

container on iOS and Android. To run a machine learning model on a mobile platform, TensorFlow Lite

was investigated (Shea, M., n.d.). TensorFlow Lite (now LiteRT) is a platform to run machine learning

models on mobile devices. All the workflow is executed within the mobile device, which avoids the need

to send data back and forth from a server hosting the model. A typical workflow using TensorFlow Lite

consists of creating and training a machine learning model in Python using TensorFlow, converting the

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

47

trained model in a suitable format for TensorFlow Lite using TensorFlow Lite converter, and deploying the

model on the mobile device using TensorFlow Lite interpreter (Ippolito, P., 2019). The MySql database

was used on the cloud to hold the recyclable item description, information and disposal instructions. The

SQLite database was used locally on the app.

Datasets

A dataset was found on GitHub called “Trashnet”. The dataset was already broken down into categories

with the images labeled and resized to 224x224. Trashnet was a good start to the project but was very

limited to only 2,527 images. After training a model with this dataset, the model could attain accuracy in

the mid-eighties but struggled to consistently classify the test images. Thus, the search for a larger dataset

began. Another recycling dataset was found on Kaggle called “Recyclable and Household Waste

Classification” which expanded the training set from 2,527 images to 15,000 and categories from 10 to 30.

Machine Learning Model and Training

The machine learning model that was selected was a CNN supported by the literature search as the most

effective model for image classification. The specific CNN models that were selected for testing were

ResNet50, MobileNetV2k, and for increased efficiency EfficientNetB0 and InceptionV3 models. ResNet

CNNs were introduced in 2015 with the 50-model having 50 layers making it considerably deeper than

earlier CNNs and the ResNet name coming from the use of residual blocks that skip connections to bypass

certain layers make it more efficient in training (Residual Network (ResNet) – Deep Learning, 2025).

EfficientNet-B0 is a CNN that is known for its efficiency and good performance in image classification

tasks. It is trained on over a million images from the ImageNet database and uses a scaling method to

uniformly scale the network’s depth, width, and resolution as opposed to other CNNs that arbitrarily scale

individual dimensions which leads to a better balance between model size, computational cost and accuracy

(Efficientnet Architecutre, 2024). InceptionV3 is a CNN that uses factorized convolutions, label smoothing

and batch normalization to enhance efficiency and accuracy (Inception V2 and V3 – Inception Network

Versions, 2022). The original intent of the app was to run the model natively on the mobile device, so the

MobileNetV2 model was added for evaluation. This is a CNN architecture that was designed by Google for

use on resource limited devices such as cell phones and other personal electronic devices.

The PyTorch framework was chosen for its suite of preprocessing tools and data loaders. The initial work

with PyTorch was on using the base model to perform the inference, but the results were lackluster.

Therefore, other base models were tested for feature extraction with the goal of building a custom

implementation of a pretrained model. The following models were evaluated: 1) ResNet50, 2)

MobileNetV2, 3) EfficientNetB0, and 4) InceptionV3. All the models finished with nearly the same results,

with the only differences being attributed to time complexity. The EfficentNetB0 and InceptionV3 models

were not as accurate on the original dataset as MobileNetV2. Since the intent was to perform inferences

natively on the mobile device, the lighter weight MobileNetV2 was chosen. It is important to note that

MobiileNetV2 has the advantage of having low compute requirements in the interest of speed and

efficiency, but it does sacrifice some accuracy to accomplish those goals. The “heavier” models should be

considered if the model would get trained with a much larger dataset with more categories of items. Google

has made some improvements upon MobileNetV2 with V3, but the model architecture was not explored

during this prototype phase.

For optimum performance tuning the hyperparameters was done next. There is a hyperparameter tuning

framework available called Optuna. With the use of Optuna, the hyperparameters that were focused on

were: 1) learning rate, 2) optimizer, 3) weight decay, 4) batch size, 5) dropout rate, and 6) scheduler type.

The model proved to be most sensitive to changes in the learning rate and the optimizer used during the

training process. It was found that AdamW and SGD were the two preferred optimizers, both without a

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

48

scheduler being used. Additionally, hyperparameter tuning with Optuna could provide for further increased

accuracy and precision.

The training used MobileNetV2 as the base model with its trained layers set to a frozen, untrainable state.

Using the model in this way allowed the use of a pretrained model for feature extraction for improved

recognition ability on the new data. Once the training reached a plateau, the pretrained model was then

unfrozen. The last ten layers of MobileNetV2 were then trained on the new dataset increasing the model’s

accuracy from 85% to ~92%.

Requirements for the User-Interface of the Recycling Mobile App

A local engineering company in collaboration with a local recycler had requested the development of this

custom app that could be used by the local population to help in finding instructions on how to recycle

various items. Also, there was interest in how the identification of items using machine learning could be

used directly in a recycling plant. The requirements of how the initial prototype app user-interface would

work are described in Figures 2 and 3.

When a user has an item that they would like to recycle and are not sure of the steps they need to take, they

could use the app to find information and instructions for recycling and disposal of the item. To do this, the

user would open the application on their mobile device and would be prompted with two options: “Take a

Photo” and “Search”. If the user decides that they would like to take a photo of their item, then they could

choose that option and their device’s camera would be engaged. The user could then take as clear a photo

as possible which would be sent to a cloud server for classification. The image would be processed by the

machine learning model (MLM) hosted on the cloud server to attempt to classify the item of interest. The

Figure 1. Hyperparameter Impact

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

49

classified item’s label would then be searched for a match in a database of recyclable items that includes

instructions for disposition. If a match is found in the database, the information and instructions would be

sent back to the app and displayed to the user in a simple “Item’s Details” page.

Figure 2. Manual Selection of Recyclable Items

by Category in UI

Figure 3. Instructions for Disposal of a

Recyclable Item Displayed in UI

If the user prefers to manually search for an item, then they could navigate to a search page by clicking the

“Search” button, which would open another page that includes drop-down menus containing all the items

in the database. The user can navigate through the menus to find an item with the corresponding recycling

and/or disposal instructions which would be looked up in the local SQLite database.

Mobile App Architecture

The app was designed to run on a user’s mobile device running either the Android, iOS or Windows

operating system and is shown in Figure 4.

Figure 4. App Architecture

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

50

When a user takes a photo, it is sent as a file stream up to a Flask application on the AWS server where the

image is processed by the trained machine learning model. Once a classification is made, the item’s label

will be returned as a string and used in a SQL WHERE statement to query the MySQL database also hosted

on AWS for the item’s recycling information. That information is then sent back to the mobile app and

displayed on the user’s device. If the user decides they would like to manually search for an item, then

they can open the search page in the app and search for it. Once an item is selected, the item label will be

used in a SQL query WHERE statement to search for it in the local SQLite database that contains all the

data synched from the cloud database.

 The flask application that facilitates running the machine learning model to classify an image sent from

the mobile app was hosted on the AWS server. The technologies used were Flask, Torch, Torchvision and

Pillow. The following pseudocode in Figures 5 and 6 describes setting up Flask and the Python code to run

the model on the cloud server. The mobile application uses the HttpClient class to send requests to the Flask

API and retrieve results from the classification which is described in the pseudocode in Figure 7. The

mobile app code is implemented in a Razor file in the Maui Blazer implementation of the mobile app.

Figure 5: Pseudocode of Flask Setup Logic

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

51

Figure 6. Python Code that runs Model using Flask.

Figure 7. Pseudocode for Method in MAUI Blazer App to Communicate with Cloud Flask App

from flask import Flask, request, jsonify

import pickle

import numpy as np

app = Flask(__name__)

Load the pre-trained model

model = pickle.load(open("model.pkl", "rb"))

@app.route('/predict', methods=['POST'])

def predict():

 data = request.get_json()

 features = np.array(data["features"]).reshape(1, -1)

 prediction = model.predict(features)

 return jsonify({'prediction': prediction.tolist()})

if __name__ == '__main__':

 app.run(debug=True)

This Flask app loads a trained model saved as model.pkl.

It listens for POST requests at the predict endpoint.

When a request with input features arrives, it passes the data to the model for prediction.

The predicted output is returned in JSON format.

Flask and any dependencies must be installed prior to running this program:

pip install flask numpy pickle-mixin

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

52

Results

The trained CNN MobileNetV2 model had training accuracy in the mid-nineties and validation accuracy in

the lower to mid-eighties. The model was suffering significantly from overfitting with the small and

invariant dataset. Once the model reached the point where it hit a plateau, the testing phase began. Initial

testing was performed on random images pulled from a Google images search.

The model showed some promise at classifying recyclable images with a precision score of 92% across all

30 categories of items. Although the accuracy numbers are not as high as we would like to get them, the

model is able to perform relatively well, misclassifying four of the 30 test images. Confusion matrices for

some of the recyclable categories are shown in Figures 8 – 11 and Table 12 shows the training statistics for

a subset of items.

Figure 8. Confusion Matrix for First Set of 10 Categories of Recyclables

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

53

Figure 9: Confusion Matrix for Second Set of 10 Categories of Recyclables

Figure 10: Confusion Matrix for Third Set of 10 Categories of Recyclables

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

54

Figure 11. Confusion Matrix for Fourth Set of 10 Categories of Recyclables

Table 12. Recyclable Item Training Statistics for Subset of Common Items

Recyclable Item precision recall f1-score

aerosol_cans 0.977911647 0.970119522 0.974

aluminum_soda_cans 0.891181989 0.95 0.9196515

cardboard_boxes 0.71192053 0.86 0.778985507

clothing 0.967676768 0.958 0.96281407

glass_beverage_bottles 0.971428571 0.952 0.961616162

glass_food_jars 0.943074004 0.994 0.967867575

magazines 0.995850622 0.96 0.977596741

newspaper 0.918714556 0.972 0.944606414

office_paper 0.948979592 0.93 0.939393939

plastic_detergent_bottles 0.986027944 0.988 0.987012987

plastic_food_containers 0.961770624 0.956 0.95887663

plastic_soda_bottles 0.941414141 0.932 0.936683417

plastic_trash_bags 0.981744422 0.968 0.974823766

plastic_water_bottles 0.947261663 0.934 0.940584089

steel_food_cans 0.754221388 0.804 0.778315586

styrofoam_food_containers 0.960784314 0.98 0.97029703

Discussion

The training set used was the “Recyclable and Household Waste Classification” training set from Kaggle.

The results showed that on average there was a classification accuracy of approximately 92% across all

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

55

categories using the MobileNetV2 model and the training set. The pictures sent to the model from the

mobile phone camera were intact items in good lighting. The results of the prediction on the test images

showed that the model had some difficulty when classifying different versions of the same item. For

example, the dataset contains images for both aluminum food cans and steel food cans. It would be a

challenge for a human to make the distinction between the two from an image. This dataset had good

images that were not broken, crumpled, obscured, dirty, or in various orientations. This may be adequate

for identifying many recyclable items at home but would not do well in suboptimal conditions or with items

that are not perfectly intact. The dataset with suboptimal images would need to be compiled in a future

phase of the project. Pictures of damaged and broken items were not identified well, and it was clear that

the dataset would need to be augmented with more suboptimal pictures of these items.

Conclusions

It is concluded that the first version of the app performed well enough so that it could be ported to a mobile

platform in the next iteration of this project. For most recyclable applications it would work relatively well.

Additional configuration using hyperparameter setting may slightly improve performance. However,

additional work will need to be done to compile a more versatile dataset with images that show items that

are broken in various orientations, obscured as identified in the problem statement. Public datasets with

broken, crumpled, and obscured recyclable items would be explored and augmented with additional

photographs taken by the developers. Image processing software may be used to automate the creation of

images under various orientations, light conditions and fuzziness. The model created using the “Recyclable

and Household Wase Classification” dataset would be further fine-tuned with these additional non-optimal

images of recyclable items. It may be a challenge finding such images already compiled in a public

repository so it may require compiling at least some of the sub-optimal recyclable images by taking

photographs of the various items and creating our own dataset. This dataset would be relatively small but

could enhance the classification of items and yet run on the mobile platform.

To get near an ideal classification may require a much larger dataset which when used in fine-tuning the

model may have to be run on the cloud where faster resources are available under the infrastructure designed

in this initial project. The model could be also enhanced by the app asking the user to identify the recyclable

category for the item and adding the image with label to the database for use in future training of the model.

Additional fine-tuning and training of the model for use on a mobile app would require experimentation to

create a dataset and model that can run with high accuracy and minimum processing power. Finally, the

UI will be further refined for better look feel and tested for usability and user experience by a cohort of

users.

References

8 out of 10 of us recycle incorrectly. (n.d.). Scrapp. https://www.scrappzero.com/products/mobile-app

Appel, M, Francis, A., Payne, A., Tanimoto, A & Mouw, S. (2024). “State of Recycling: The Present

and Future of Residential Recycling in the U.S. | 2024”. Retrieved on 05/14/2025 from

https://recyclingpartnership.org/wp-content/uploads/dlm_uploads/2024/05/SORR_Methodology-

1-1.pdf

Efficientnet Architecture. (2024, Jun 3). GeeksforGeeks. https://www.geeksforgeeks.org/efficientnet-

architecture/

https://www.scrappzero.com/products/mobile-app
https://recyclingpartnership.org/wp-content/uploads/dlm_uploads/2024/05/SORR_Methodology-1-1.pdf
https://recyclingpartnership.org/wp-content/uploads/dlm_uploads/2024/05/SORR_Methodology-1-1.pdf
https://www.geeksforgeeks.org/efficientnet-architecture/
https://www.geeksforgeeks.org/efficientnet-architecture/

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

56

Flask. (2010). Pallets. https://flask.palletsprojects.com/en/stable/

How to Convert a Flask App to Mobile Apps for iOS and Android. (2025). Mobiloud.

https://www.mobiloud.com/use-

cases/flask#:~:text=With%20%27webview%27%20technology%2C%20your,running%20as%20

a%20mobile%20app.

Inception V2 and V3 – Inception Network Versions. (2022, Oct 14). GeeksforGeeks.

https://www.geeksforgeeks.org/inception-v2-and-v3-inception-network-versions/

Gee, S. (2017, June 18). iNaturalist Launches Deep Learning-Based Identification App. https://www.i-

programmer.info/news/105-artificial-intelligence/10848-inaturalist.html/

GreenScanr. (n.d.). DC1. https://www.datacompanyone.com/greenscanr-app

Hoffman, B. & Van Hom, G. (2021, Jun 22). Behind the Scenes of Sound ID in Merlin. CornellLab

Macaulay Library. https://www.macaulaylibrary.org/2021/06/22/behind-the-scenes-of-sound-id-

in-merlin/

iNaturalist Computer Vision Explorations. (n.d.). iNaturalist.

https://www.inaturalist.org/pages/computer_vision_demo

Ippolito, P. (2019). How to Deploy Machine Learning Models on Mobile and Embedded Devices.

https://www.freecodecamp.org/news/machine-learning-for-mobile-and-embedded-devices/

Iwane, T. (2019, April 19). Real-time Computer Vision predictions in Seek by iNaturalist version 2.0.

iNaturalist. https://www.inaturalist.org/blog/23075-real-time-computer-vision-predictions-in-

seek-by-inaturalist-version-2-0

Lai, Y. (2019, October). A comparison of traditional machine learning and deep learning in image

recognition. In Journal of Physics: Conference Series (Vol. 1314, No. 1, p. 012148). IOP

Publishing.

Li, Y. (2022, January). Research and application of deep learning in image recognition. In 2022 IEEE 2nd

international conference on power, electronics and computer applications (ICPECA) (pp. 994-

999). IEEE.Merlin Bird ID. (n.d.). CornellLab. https://merlin.allaboutbirds.org/

Model optimization. (2024). LiteRT. https://www.tensorflow.org/lite/performance/model_optimization

Pak, M., & Kim, S. (2017, August). A review of deep learning in image recognition. In 2017 4th

international conference on computer applications and information processing technology

(CAIPT) (pp. 1-3). IEEE.

Recycle waste. (n.d.). EcoScan. https://www.ecoscanapp.eu/

Residual Networks (ResNet) – Deep Learning. (2015, Apr 7). https://www.geeksforgeeks.org/residual-

networks-resnet-deep-learning/

Scan, Recycle, Transform with EcoScan. (n.d.). EcoScan. https://www.ecoscan.tech/

Seek by iNaturalist. (n.d.). iNaturalist. https://www.inaturalist.org/pages/seek_app

Shea, M. (n.d.). TensorFlow Lite Inception Model Android Tutorial.

https://www.youtube.com/watch?v=8zQsAl2z4iU

https://flask.palletsprojects.com/en/stable/
https://www.mobiloud.com/use-cases/flask#:~:text=With%20%27webview%27%20technology%2C%20your,running%20as%20a%20mobile%20app
https://www.mobiloud.com/use-cases/flask#:~:text=With%20%27webview%27%20technology%2C%20your,running%20as%20a%20mobile%20app
https://www.mobiloud.com/use-cases/flask#:~:text=With%20%27webview%27%20technology%2C%20your,running%20as%20a%20mobile%20app
https://www.geeksforgeeks.org/inception-v2-and-v3-inception-network-versions/
https://www.i-programmer.info/news/105-artificial-intelligence/10848-inaturalist.html/
https://www.i-programmer.info/news/105-artificial-intelligence/10848-inaturalist.html/
https://www.datacompanyone.com/greenscanr-app
https://www.macaulaylibrary.org/2021/06/22/behind-the-scenes-of-sound-id-in-merlin/
https://www.macaulaylibrary.org/2021/06/22/behind-the-scenes-of-sound-id-in-merlin/
https://www.inaturalist.org/pages/computer_vision_demo
https://www.freecodecamp.org/news/machine-learning-for-mobile-and-embedded-devices/
https://www.inaturalist.org/blog/23075-real-time-computer-vision-predictions-in-seek-by-inaturalist-version-2-0
https://www.inaturalist.org/blog/23075-real-time-computer-vision-predictions-in-seek-by-inaturalist-version-2-0
https://merlin.allaboutbirds.org/
https://www.tensorflow.org/lite/performance/model_optimization
https://www.ecoscanapp.eu/
https://www.geeksforgeeks.org/residual-networks-resnet-deep-learning/
https://www.geeksforgeeks.org/residual-networks-resnet-deep-learning/
https://www.ecoscan.tech/
https://www.inaturalist.org/pages/seek_app
https://www.youtube.com/watch?v=8zQsAl2z4iU

Issues in Information Systems
Volume 26, Issue 2, pp. 43-57, 2025

57

Smith, T. (2019, Sep 22). Plantsnap and Imagga Use Machine Learning to Put a Botanist in Your

Pocket. TDS Archive. https://medium.com/data-science/plantsnap-puts-a-botanist-in-your-

pocket-dc0d3f7aef47

Sohoni, N. S., Aberger, C., et al. (n.d.). Low-Memory Neural Network Training: A Technical Report.

https://arxiv.org/pdf/1904.10631.pdf

World Leading Plant Identification Technology (n.d.). Plantsnap. https://www.plantsnap.com/

https://medium.com/data-science/plantsnap-puts-a-botanist-in-your-pocket-dc0d3f7aef47
https://medium.com/data-science/plantsnap-puts-a-botanist-in-your-pocket-dc0d3f7aef47
https://arxiv.org/pdf/1904.10631.pdf
https://www.plantsnap.com/

