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Abstract 

The strategic integration of Artificial Intelligence (AI) into healthcare systems offers significant 

opportunities to drive innovation, improve productivity, and enhance patient outcomes. One ongoing 

challenge in clinical AI applications is class imbalance, where minority cases, often representing the most 

critical health risks, are significantly underrepresented in datasets. This imbalance reduces model 

sensitivity and limits the effectiveness of AI-driven decision-making. To address this issue, this study 

presents a comparative analysis of five widely used oversampling strategies: SMOTE, Borderline-

SMOTE, SMOTE-Tomek, SMOTE-ENN, and SVM-SMOTE. Using two imbalanced healthcare datasets 

(ASD-Child and Stroke), we evaluate each technique's impact on the performance of four machine 

learning classifiers: Logistic Regression, Random Forest, XGBoost, and Gradient Boosting. The models 

are assessed using multiple evaluation metrics: recall, precision, F1-score, ROC-AUC, and PR-AUC. This 

study provides practical guidance for healthcare organizations aiming to implement AI strategies that 

support fairer predictions, stronger clinical insights, and more productive data-driven systems by 

identifying optimal combinations of resampling techniques and classifiers. 

Keywords: class imbalance, SMOTE, SMOTE-Variants, machine learning, autism spectrum disorder, 

stroke prediction, healthcare analytics 

Introduction 

Artificial Intelligence (AI) has transformed healthcare through new opportunities that enhance clinical 

workflows, optimize operations, and improve patient outcomes. By integrating AI strategies into healthcare 

systems, organizations can make more informed decisions, automate diagnostic processes, and uncover 

patterns that may be difficult to detect using traditional methods. Machine learning (ML), a core subset of 

AI, has been widely applied in healthcare for classification tasks such as disease detection, mortality risk 

prediction, and hospital readmission forecasting. However, a persistent challenge in these applications is 

class imbalance. A class imbalance is when a dataset where categories or class are not equally distributed. 

This can be problematic for machine learning which can lead to biases and errors in decision making and 

prediction. Many healthcare datasets contain a disproportionately small number of positive cases compared 

to negative ones. This imbalance often leads to biased models that favor the majority class and fail to 

accurately identify high-risk individuals, which can compromise the effectiveness of clinical decision-

making (He & Garcia, 2009). 
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Researchers commonly apply resampling techniques that adjust the class distribution before training 

machine learning models to address this challenge. Among these, the Synthetic Minority Over-sampling 

Technique (SMOTE) has emerged as one of the most widely used approaches in imbalanced learning 

(Chawla et al., 2002). SMOTE generates synthetic examples of the minority class by interpolating between 

existing instances and their nearest neighbors, allowing models to recognize underrepresented patterns 

better. 

 

Several SMOTE variants have been developed to enhance the quality and relevance of synthetic samples. 

Borderline-SMOTE focuses on generating new instances near the decision boundary, where 

misclassifications are more likely to occur (Han et al., 2005). SMOTE-Tomek and SMOTE-ENN combine 

oversampling with under-sampling techniques to remove noise and overlapping examples (Batista et al., 

2004; He & Garcia, 2009). SVM-SMOTE (Support Vector Machine-SMOTE) further refines the sampling 

process by using a Support Vector Machine to identify harder-to-classify minority instances and 

preferentially generating synthetic samples near these borderline areas (Nguyen et al., 2011). While these 

methods have demonstrated value in individual studies, there is limited research that compares their 

effectiveness across multiple models and healthcare datasets. 

 

This study addresses that gap by evaluating SMOTE and its key variants across two publicly available and 

imbalanced healthcare datasets. These include the ASD-Child dataset, which focuses on autism spectrum 

disorder screening in children (Thabtah, 2017), and the Stroke Dataset, which contains clinical and 

demographic predictors of stroke risk (Fedesoriano, n.d.). These datasets represent diverse populations and 

clinical conditions, making them well-suited for evaluating the generalizability and robustness of 

resampling techniques. 

 

We use four widely recognized machine learning classifiers: Logistic Regression (LR), Random Forest 

(RF), Extreme Gradient Boosting (XGBoost), and Gradient Boosting (GB). These models were selected 

for their robust performance in healthcare applications and ability to capture linear, nonlinear, and 

ensemble-based relationships. Although many studies apply resampling to a single dataset or classifier, few 

provide comprehensive, side-by-side comparisons using rigorous evaluation metrics. Even fewer studies 

offer practical guidance on how organizations can strategically apply resampling techniques as part of an 

AI-driven approach to improve fairness, predictive performance, and decision support in healthcare 

systems. 

 

The following research questions guide this study: 

 

1. RQ1: How do SMOTE and its variants impact the classification performance of machine 

learning models on imbalanced healthcare datasets? 

2. RQ2: Which resampling technique and classifier combination yields the highest precision, 

recall, F1-score, and AUC for the minority class? 

3. RQ3: What practical insights can be derived for integrating SMOTE-based techniques into AI 

strategies that support innovation, operational efficiency, and better clinical outcomes? 

The main contributions of this study include: 

1. A comparative evaluation of SMOTE, Borderline-SMOTE, SMOTE-Tomek, SMOTE-ENN, and 

SVM-SMOTE using four real-world, imbalanced healthcare datasets. 

2. Performance benchmarking across four machine learning classifiers to assess how resampling 

methods interact with different learning algorithms. 

3. A comprehensive assessment using multiple evaluation metrics, including accuracy, precision, 

recall, F1-score, ROC-AUC, and PR-AUC. 
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4. Actionable recommendations for healthcare organizations and practitioners on selecting and 

integrating resampling techniques into AI systems that align with organizational goals for 

innovation, fairness, and productivity. 

 

The remainder of this paper is organized as follows: Section 2 reviews relevant literature on class 

imbalance, resampling methods, and healthcare classification. Section 3 outlines the research methodology 

and section 4 presents the results and discussion. Section 5 discusses the study's conclusion and limitations. 

The paper concludes with section 6 offering recommendations for future research. 

 

 

Literature Review 

 
This section discusses the main categories of data-level class balancing techniques evaluated in this study, 

and review machine learning algorithms used for healthcare classification. These techniques are designed 

to mitigate the bias introduced by class imbalance, particularly in binary classification tasks involving rare 

but clinically significant outcomes.  

 

Resampling Methods 

Several studies have explored the effectiveness of SMOTE and its variants in addressing class imbalance 

in predictive modeling. The original SMOTE algorithm generates synthetic examples for the minority class, 

which improves class balance and recall, though it can lead to overlapping classes and potential overfitting 

(Chawla et al., 2002; Carvalho et al., 2025). 

 

Borderline-SMOTE (B-SMOTE) 

Borderline-SMOTE (B-SMOTE) builds on the original SMOTE by focusing on sample generation near the 

decision boundary. Unlike the original SMOTE algorithm, which generates synthetic samples across the 

entire minority class, Borderline-SMOTE specifically targets "in danger" instances—those minority class 

samples close to majority class samples and are therefore more likely to be misclassified. It is often more 

effective than basic SMOTE in binary classification but performs poorly with noisy or overlapping class 

regions (Han et al., 2005).  

 

SMOTE-Tomek 

SMOTE-Tomek integrates SMOTE with Tomek links to remove overlapping majority samples, thus 

cleaning the dataset and improving class separability (Batista et al., 2004). This method focuses on 

identifying and removing specific data point pairs that are close to each other but belong to different classes, 

thereby refining the decision boundary between classes. By eliminating these instances, particularly from 

the majority class, the classifier can achieve a more precise separation between classes, leading to improved 

performance. However, it can remove valuable borderline instances. 

 

SMOTE with Edited Nearest Neighbors (SMOTE_ENN) 

SMOTE with Edited Nearest Neighbors (SMOTE_ENN) combines SMOTE with Edited Nearest 

Neighbors, an undersampling method that creates a cleaner and more balanced training dataset. This method 

is particularly effective in noisy real-world datasets and often yields higher model accuracy, precision, 

and recall, especially for minority classes. However, it is computationally intensive and may remove valid 

samples (Fernández et al., 2018). 

 

Support Vector Machine SMOTE (SVM-SMOTE) 

Finally, Support Vector Machine SMOTE (SVM-SMOTE) uses support vector machines to focus sample 

generation near the classifier boundary, which is especially useful in nonlinear problems but can be 
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resource-intensive and sensitive to SVM parameter tuning (Nguyen et al., 2011). The core idea of SVM is 

to find the best separating boundary (hyperplane) between data classes. Despite their advantages, all 

SMOTE variants have limitations, and empirical studies highlight the need for domain-specific validation, 

particularly in multi-class settings and datasets with small or noisy samples (Bunkhumpornpat et al., 2009; 

Ganganwar, 2012; Yang et al., 2024; Carvalho et al., 2025).  

 

Machine Learning and Disease Diagnosis 

Machine learning (ML) algorithms have become central to advancing predictive analytics in healthcare, 

particularly disease diagnosis. Among these, Logistic Regression (LR), Random Forest (RF), Gradient 

Boosting (GB), and Extreme Gradient Boosting (XGBoost) are frequently employed due to their 

interpretability, robustness, and superior predictive capabilities.  

 

Logistic Regression (LR) 

Logistic Regression (LR) is a foundational algorithm in clinical prediction due to its simplicity and 

interpretability. It is frequently used as a benchmark model in comparative studies. For instance, Ghanem 

et al. (2023) found that LR provided a balanced performance in predicting acute kidney injury (AKI) post-

cardiac surgery, achieving a sensitivity of 87.7% and a specificity of 87.05%. However, it was outperformed 

by more complex ensemble methods in overall accuracy and AUC. Similarly, Sharma et al. (2024) included 

LR in an ensemble for heart disease prediction, noting that while LR alone performed moderately, its 

integration improved overall model performance. 

 

Random Forest (RF) 

Random Forest (RF), an ensemble technique based on decision trees, is valued for its robustness against 

overfitting and ability to handle high-dimensional data. In a study on hypertension complications, RF was 

among the top-performing models, although XGBoost slightly outperformed it in predictive metrics (Tao 

et al., 2020). Moreover, RF models have shown reliable accuracy in cardiovascular disease detection 

compared to other algorithms (Ahmed et al., 2024). 

 

Gradient Boosting (GB) 

Gradient Boosting (GB), which builds models sequentially to correct errors of prior models, has gained 

popularity due to its high accuracy in structured healthcare data. Ghanem et al. (2023) reported that GB 

achieved an accuracy of 88.66% and an AUC of 94.61% in predicting AKI, outperforming both RF and 

LR. Similarly, in a comparative study on diabetes prediction, GB demonstrated superior performance across 

several metrics, albeit with a longer execution time (Khan et al., 2023). 

 

Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost), a more regularized and efficient version of GB, has emerged as a 

top performer in several healthcare applications. It demonstrated the highest F1 score (0.875) and AUC 

(0.927) in predicting complications in hypertensive patients (Tao et al., 2020). XGBoost also achieved a 

91% accuracy in osteoporosis risk prediction while maintaining model explainability (Zhang et al., 2024). 

These findings are consistent across studies, with XGBoost frequently surpassing other models in predictive 

power and precision (Sharma et al., 2024; Ahmed et al., 2024).   

 

Despite the advantages of complex ensemble models like GB and XGBoost, trade-offs exist. While these 

models offer improved performance, they often require more computational resources and may lack the 

transparency of LR, making interpretability a challenge in clinical settings. However, the development of 

explainable AI techniques is beginning to address this concern, particularly in models applied to critical 

domains such as osteoporosis risk and cardiovascular disease detection (Zhang et al., 2024). 
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Methodology  
 

This study adopts a structured research methodology from Kamiri and Mariga (2021), consisting of five 

key stages: data collection, pre-processing, model training, model testing, and model evaluation. The 

methodology was designed to ensure consistency across multiple datasets and machine learning models, 

allowing for a robust comparative analysis of SMOTE and its variants in healthcare classification tasks. 

Two publicly available and imbalanced healthcare datasets were selected for their clinical relevance and 

potential to inform AI-based decision-making: the ASD-Child dataset and the Stroke dataset (Thabtah, 

2017; Fedesoriano, n.d.). Each dataset exhibits measurable class imbalance in the target variable and 

contains a mix of categorical and numerical features. 

ASD-Child Dataset 

The ASD-Child dataset, obtained from the UCI Machine Learning Repository (Thabtah, 2017), contains 

292 records and is provided in ARFF format. It includes 20 features related to behavioral and demographic 

attributes, and one binary target variable, Class/ASD, indicating whether the individual is classified as 

having Autism Spectrum Disorder, as described in Table 1 below.  

 
Table 1. Feature Description of ASD-Child Dataset 

Feature  Description Data Type # Missing Value 

A1_Score to 

A10_Score 

Ten screening questions related to behavior and 

communication 
object 0 

age Age of the individual float64 4 

gender Gender of the individual object 0 

ethnicity Ethnic background of the individual object 43 

jundice History of jaundice at birth object 0 

austim Family history of ASD object 0 

Country_of_res Country of residence object 0 

used_app_before Whether the individual used a screening app before object 0 

result Screening result score float64 0 

age_desc Age group category (child, adolescent, adult) object 0 

relation Relation of the respondent to the individual object 43 

Class/ASD Target Variable: ASD classification label (Yes or No) object 0 

 

The dataset contains four missing values in the age column, and 43 missing values each in the ethnicity and 

relation columns. There are 208 females and 84 males, with a minimum age of 4 years and a mean age of 

approximately 6 years. The dataset features ethnically and geographically diverse cases. The target variable 

(Class/ASD) shows a relatively balanced distribution: 51.71% No and 48.29% Yes. 

Stroke Dataset 

The Stroke dataset was obtained from Kaggle (Fedesoriano, n.d.) and is provided in CSV format. It contains 

5,110 instances, each representing a patient’s health and demographic profile, as described in Table 2 

below. This dataset was selected due to its clinical relevance and clear class imbalance, which reflects the 

rarity of stroke events in real-world populations. 

 
Table 2. Feature Description of a Stroke Dataset 

Feature Description Data Type # Missing Value 

id Unique identifier int64 0 

gender Male, Female, or Other object 0 

age Age of the patient float64 0 
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Feature Description Data Type # Missing Value 

hypertension 0 if the patient does not have hypertension, one if 

the patient has hypertension 
int64 0 

heart_disease 0 if the patient does not have any heart diseases, one 

if the patient has a heart disease 
int64 0 

ever_married No or Yes object 0 

work_type Children, Govt_job, Never_worked, Private, or 

Self-employed 
object 0 

Residence_type Rural or Urban object 0 

avg_glucose_level Average glucose level in the blood float64 0 

bmi Body mass index float64 201 

smoking_status Formerly smoked, Never smoked, Smokes, or 

Unknown 
object 0 

stroke 1 if the patient had a stroke, zero if not int64 0 

 

The dataset includes both categorical and numerical features related to stroke risk factors. Of the records, 

2,994 patients were female, 2,115 were male, and one was categorized as “Other.” The average age of 

patients in the dataset is 43 years, ranging from 18 to 82. Among the patients, 498 had hypertension, and 

276 had heart disease. The dataset exhibits a significant class imbalance, with 95.1% of the records (4,861 

cases) representing non-stroke patients and only 4.9% (249 cases) representing stroke patients. This 

imbalance poses challenges for classification algorithms and highlights the importance of resampling 

techniques to enhance minority class detection in predictive healthcare modeling.  

 

Data Pre-processing 

Data pre-processing was conducted separately for each dataset to ensure data quality, consistency, and 

suitability for machine learning model training.   

 

ASD-Child Dataset 

The ASD-Child dataset underwent targeted pre-processing to improve data quality and ensure compatibility 

with machine learning algorithms. Features such as ethnicity, country_of_res, and age_desc were removed 

due to a high proportion of missing values and limited predictive relevance. After their removal, 18 features 

remained for analysis. To handle missing values, the numerical column age was imputed using the mean, 

while the categorical column relation was imputed using the mode, representing the most frequent category. 

The screening question features A1_Score to A10_Score, initially stored as object types, and converted to 

integers. The age column was also converted from float to integer to ensure consistency across records. 

Other categorical variables were adjusted as necessary to support proper encoding. Label encoding was 

applied to binary categorical features such as jaundice, autism, and used_app_before, where “Yes” was 

mapped to 1 and “No” to 0. One-hot encoding was applied for the relation column, which contains multiple 

categories, to generate separate binary indicator columns for each unique category. Finally, the target 

variable Class/ASD was binarized, with “No” mapped to 0 and “Yes” to 1, ensuring compatibility with 

binary classification models. 

Stroke Dataset 

The data pre-processing steps applied to the Stroke dataset closely followed those used for the ASD-Child 

dataset. The ID column was removed because it did not provide any predictive value. The only missing 

values in the dataset were found in the BMI column, a numerical feature that was imputed using the mean. 

A categorical variable, such as ever_married, with values “Yes” or “No,” was encoded using label encoding, 

where “Yes” was mapped to 1 and “No” to 0. Categorical variables with multiple categories, including 

gender, work_type, Residence_type, and smoking_status, were transformed using one-hot encoding to 
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create separate binary columns for each unique category.  

 

Correlation and Significant Feature Selection 

After data cleaning and encoding, correlation analysis was conducted to examine relationships between 

independent variables and the target variable (Class/ASD for the ASD-Child dataset and stroke for the 

Stroke dataset). This step helped identify and remove features with little or no predictive value. In the ASD-

Child dataset, many features demonstrated a strong positive correlation with the target variable, with several 

correlation coefficients exceeding 0.80. Given their high predictive relevance, all remaining features were 

retained for model development (Figure 1). 

 

In contrast, the Stroke dataset contained several features with negligible correlation to the target variable. 

Specifically, work_type_Govt_job, gender_Other, and smoking_status_never smoked exhibited near-zero 

correlation with stroke occurrence. These features were excluded from the model development phase based 

on the correlation results (Figure 2).  

 

  

Figure 1. Correlation between Target and 

Independent Variables on the ASD-Child 

Dataset 

Figure 2. Correlation between Target and 

Independent Variables on the Stroke Dataset 

 

Model Selection and Development 

In this study, model development followed a consistent, systematic, and reproducible pipeline to evaluate 

the impact of resampling methods on classification performance across both datasets. Each dataset was split 

into training and testing subsets using an 80:20 stratified split to preserve the original class distribution. 

Stratification was used to ensure that both subsets reflected the class imbalance inherent in the data, which 

is crucial for reliable evaluation in imbalanced learning scenarios.  

 

Four widely used machine learning classifiers were selected for evaluation: Logistic Regression (LR), 

Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Gradient Boosting (GB). Each model 

was initialized with a fixed random seed (random_state = 42) to ensure reproducibility. To investigate the 

effects of resampling, five techniques were applied: SMOTE, Borderline-SMOTE, SMOTE-Tomek, 

SMOTE-ENN, and SVM-SMOTE, along with a baseline configuration without resampling (referred to as 

“None”). 

A machine learning pipeline was constructed for each combination of classifier and resampling technique. 

When resampling was applied, it was introduced at the initial stage of the pipeline, followed by feature 

standardization using StandardScaler, and then model fitting. To ensure robust evaluation, each pipeline 

was trained using stratified 5-fold cross-validation on the training set, with folds maintaining the original 

class distribution using the StratifiedKFold method. 
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Model performance was assessed using six key evaluation metrics: Accuracy, Precision, Recall, F1-Score, 

ROC-AUC, and PR-AUC. These metrics were chosen to evaluate both overall classification performance 

and the models’ effectiveness at detecting minority class instances, and they are an essential consideration 

in healthcare settings were identifying rare but critical outcomes (e.g., disease diagnoses) is vital. 

After cross-validation, each pipeline was retrained on the whole training set and evaluated on the holdout 

test set. Predictions were generated, and confusion matrices were computed to derive the number of true 

negatives (TN), false positives (FP), false negatives (FN), and true positives (TP) for each model-

resampling combination. These matrices were also visualized to support interpretation and error analysis. 

All cross-validation results, confusion matrices, and model predictions were organized in structured 

DataFrames to facilitate consistent downstream analysis. This design enabled a transparent and 

comprehensive comparison across models and resampling methods, providing a strong foundation for 

addressing the research questions on resampling effectiveness in imbalanced healthcare classification. 

Evaluation Metrics 

To ensure a comprehensive and rigorous assessment of model performance, the following evaluation 

metrics were employed:  

 

1. Accuracy: The proportion of total correct predictions (both true positives and true negatives) 

among all instances. While commonly used, accuracy can be misleading in imbalanced 

datasets, as it tends to favor the majority class. 

2. Precision (Positive Predictive Value): The proportion of correctly predicted positive cases 

among all cases predicted as positive. Precision is critical when the cost of false positives is 

high. 

3. Recall (Sensitivity or True Positive Rate): The proportion of actual positive cases the model 

correctly identifies. Recall is critical in healthcare applications, where missing a positive (false 

negative) case can have serious consequences. 

4. F1-Score: The harmonic mean of precision and recall. F1-score provides a balanced measure 

of a model's performance when precision and recall are important, particularly in imbalanced 

scenarios. 

5. Area Under the Receiver Operating Characteristic Curve (AUC-ROC): A metric that 

summarizes the model’s ability to distinguish between classes across all thresholds. Higher 

AUC-ROC values indicate better overall discriminatory performance. 

6. Area Under the Precision-Recall Curve (PR-AUC): A critical metric for imbalanced 

datasets, PR-AUC focuses on the trade-off between precision and recall. It provides a clearer 

view of the model’s effectiveness on the minority class compared to AUC-ROC. 

7. Confusion Matrix: A detailed breakdown of model predictions showing the number of true 

positives, true negatives, false positives, and false negatives. The confusion matrix provides a 

granular view of the model’s performance beyond aggregate metrics, enabling targeted analysis 

of strengths and weaknesses. 

 

Results and Discussions 

 
ASD-Child Dataset    

Overall Performance 

As shown in Table 3, all four machine learning classifiers: Logistic Regression (LR), Random Forest (RF), 

Gradient Boosting (GB), and XGBoost (XGB), performed exceptionally well on the ASD-Child dataset 

across all resampling techniques. This strong performance is partially attributed to the relatively balanced 

distribution of the target variable, with 51.71% of instances labeled “No” and 48.29% labeled “Yes.”  
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Ensemble models (RF, GB, and XGB) achieved perfect classification without resampling, recording 100% 

across all performance metrics. Logistic Regression also delivered high performance, with 99% accuracy, 

100% precision, 97% recall, and a 99% F1-score. This indicates that mild class imbalance in this dataset 

did not hinder classifier performance, especially for ensemble models.  

 
Table 3. Model Performance Comparison Across Resampling Methods on the ASD-Child Data 

Resampling Model Accuracy Precision Recall F1 AUC-ROC PR-AUC 

None 

LR 0.99 1.00 0.97 0.99 1.00 1.00 

RF 1.00 1.00 1.00 1.00 1.00 1.00 

GB 1.00 1.00 1.00 1.00 1.00 1.00 

XGBoost 1.00 1.00 1.00 1.00 1.00 1.00 

SMOTE 

LR 0.98 0.99 0.97 0.98 1.00 1.00 

RF 1.00 1.00 1.00 1.00 1.00 1.00 

GB 1.00 1.00 1.00 1.00 1.00 1.00 

XGBoost 1.00 1.00 1.00 1.00 1.00 1.00 

B-SMOTE 

LR 0.99 0.99 0.99 0.99 1.00 1.00 

RF 1.00 1.00 1.00 1.00 1.00 1.00 

GB 1.00 1.00 1.00 1.00 1.00 1.00 

XGBoost 1.00 1.00 1.00 1.00 1.00 1.00 

SMOTE-

Tomek 

LR 0.99 1.00 0.97 0.99 1.00 1.00 

RF 1.00 1.00 1.00 1.00 1.00 1.00 

GB 1.00 1.00 1.00 1.00 1.00 1.00 

XGBoost 1.00 1.00 1.00 1.00 1.00 1.00 

SMOTE-

ENN 

LR 0.95 0.90 1.00 0.95 1.00 1.00 

RF 0.97 0.96 1.00 0.98 1.00 1.00 

GB 1.00 1.00 1.00 1.00 1.00 1.00 

XGBoost 1.00 1.00 1.00 1.00 1.00 1.00 

SVM-

SMOTE 

LR 0.99 0.99 0.98 0.99 1.00 1.00 

RF 1.00 1.00 1.00 1.00 1.00 1.00 

GB 1.00 1.00 1.00 1.00 1.00 1.00 

XGBoost 1.00 1.00 1.00 1.00 1.00 1.00 

Across all resampling methods, including SMOTE, Borderline-SMOTE, SMOTE-Tomek, SMOTE-ENN, 

and SVM-SMOTE, the ensemble models consistently maintained perfect or near-perfect scores, showing 

strong robustness. Logistic Regression showed more sensitivity, with noticeable shifts in precision and 

recall depending on the resampling method. For example, SMOTE-ENN achieved perfect recall (100%) 

but reduced precision (90%), indicating a trade-off due to increased false positives. Borderline-SMOTE 

and SVM-SMOTE preserved a better balance, both achieving 99% precision and 98 to 99% recall.  

 

Confusion Matrix Analysis 

Table 4 reinforces these results. Ensemble models classified all instances correctly without resampling, 

with no false positives or negatives. Logistic Regression incurred only one false positive. With SMOTE-

ENN, Logistic Regression detected all positive cases but produced the highest number of false positives 

(three), while ensemble models remained unaffected.  

 
Table 4. Confusion Matrix Comparison Across Resampling Methods on the ASD-Child Data 

Resampling Model  True-Negative False-Positive False-Negative True-Positive 

None 

LR 30 1 0 28 

RF 31 0 0 28 

GB 31 0 0 28 

XGBoost 31 0 0 28 



Issues in Information Systems 
Volume 26, Issue 2, pp. 70-85, 2025 

 
 

79 

 

Resampling Model  True-Negative False-Positive False-Negative True-Positive 

SMOTE 

LR 30 1 0 28 

RF 31 0 0 28 

GB 31 0 0 28 

XGBoost 31 0 0 28 

B-SMOTE 

LR 29 2 0 28 

RF 31 0 0 28 

GB 31 0 0 28 

XGBoost 31 0 0 28 

SMOTE-Tomek 

LR 29 2 0 28 

RF 31 0 0 28 

GB 31 0 0 28 

XGBoost 31 0 0 28 

SMOTE-ENN 

LR 28 3 0 28 

RF 29 2 0 28 

GB 31 0 0 28 

XGBoost 31 0 0 28 

SVM-SMOTE 

LR 29 2 0 28 

RF 31 0 0 28 

GB 31 0 0 28 

XGBoost 31 0 0 28 

 

These findings demonstrate that ensemble models can effectively handle classification for relatively 

balanced datasets without requiring aggressive resampling. However, resampling can still enhance the 

performance of simpler models such as Logistic Regression, particularly when fine-tuning precision-recall 

trade-offs are desirable.  

 

Stroke Dataset  

Overall Performance 

As shown in Table 5, all models struggled on the Stroke dataset due to its extreme class imbalance (95.1% 

non-stroke vs. 4.9% stroke). Without resampling, models exhibited high overall accuracy (94-95%) but 

poor detection of stroke cases.  

   

For example, Logistic Regression achieved 95% accuracy but 0% precision, recall, and F1-score. Ensemble 

models performed slightly better, with recall ranging from 1% to 6% and F1-scores below 10%. 

 

Table 5: Model Performance Comparison Across Resampling Methods on the Stroke Data 
Resampling Model Accuracy Precision Recall F1 AUC-ROC PR-AUC 

 

None 

LR 0.95 0.00 0.00 0.00 0.84 0.19 

RF 0.95 0.20 0.01 0.02 0.80 0.16 

GB 0.95 0.20 0.02 0.04 0.84 0.19 

XGBoost 0.94 0.18 0.06 0.08 0.80 0.15 

 

SMOTE 

LR 0.90 0.15 0.24 0.18 0.76 0.13 

RF 0.93 0.14 0.07 0.09 0.78 0.13 

GB 0.90 0.12 0.17 0.14 0.78 0.13 

XGBoost 0.92 0.15 0.13 0.13 0.78 0.13 

 

B-SMOTE 

LR 0.90 0.16 0.26 0.20 0.79 0.15 

RF 0.94 0.15 0.06 0.08 0.79 0.15 

GB 0.91 0.13 0.16 0.14 0.80 0.14 

XGBoost 0.93 0.16 0.13 0.14 0.78 0.14 
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Resampling Model Accuracy Precision Recall F1 AUC-ROC PR-AUC 

 

SMOTE-

Tomek 

LR 0.90 0.15 0.23 0.18 0.77 0.14 

RF 0.93 0.15 0.08 0.10 0.78 0.13 

GB 0.90 0.12 0.17 0.13 0.78 0.13 

XGBoost 0.92 0.11 0.11 0.11 0.78 0.13 

 

SMOTE-

ENN 

LR 0.84 0.15 0.48 0.23 0.80 0.16 

RF 0.88 0.16 0.34 0.21 0.80 0.14 

GB 0.82 0.13 0.50 0.21 0.80 0.15 

XGBoost 0.85 0.16 0.46 0.23 0.80 0.15 

 

SVM-

SMOTE 

LR 0.92 0.19 0.17 0.17 0.80 0.15 

RF 0.94 0.18 0.07 0.10 0.79 0.14 

GB 0.93 0.21 0.12 0.15 0.81 0.15 

XGBoost 0.93 0.15 0.11 0.13 0.79 0.15 

 

Applying oversampling methods improved minority class performance, especially recall and F1-score, 

though typically at the cost of reduced accuracy. SMOTE-ENN significantly boosted recall, with Logistic 

Regression reaching 48%, Gradient Boosting 50%, and XGBoost 46%. Corresponding F1-scores ranged 

from 21% to 23%. However, this gain came with an increase in false positives. SVM-SMOTE yielded 

moderate and more balanced gains, particularly for Logistic Regression (19% precision and 17% recall) 

and Gradient Boosting (21% precision and 12% recall), indicating its utility when sensitivity and specificity 

matter.  

 

Confusion Matrix Analysis 

As shown in Table 6, most models failed to detect stroke cases without resampling. Logistic Regression 

detected only one, while Random Forest and Gradient Boosting failed to detect any. XGBoost identified 

four true positives. With SMOTE-ENN, Logistic Regression detected 30 stroke cases with 140 false 

positives, highlighting the trade-off between sensitivity and specificity.  

 
Table 6. Confusion Matrix Comparison Across Resampling Methods on the Stroke Data 

Resampling Model  True-Negative False-Positive False-Negative True-Positive 

None 

LR 972 0 49 1 

RF 967 5 50 0 

GB 967 5 50 0 

XGBoost 958 14 46 4 

SMOTE 

LR 900 72 32 18 

RF 939 33 48 2 

GB 907 65 36 14 

XGBoost 933 39 48 2 

B-SMOTE 

LR 896 76 30 20 

RF 948 24 47 3 

GB 917 55 38 12 

XGBoost 942 30 47 3 

SMOTE-Tomek 

LR 905 67 33 17 

RF 937 35 47 3 

GB 909 63 35 15 

XGBoost 938 34 47 3 

SMOTE-ENN 

LR 832 140 20 30 

RF 884 88 34 16 

GB 830 142 22 28 

XGBoost 862 110 28 22 



Issues in Information Systems 
Volume 26, Issue 2, pp. 70-85, 2025 

 
 

81 

 

Resampling Model  True-Negative False-Positive False-Negative True-Positive 

SVM-SMOTE 

LR 921 51 34 16 

RF 955 17 48 2 

GB 943 29 41 9 

XGBoost 944 28 46 4 

SVM-SMOTE enabled Logistic Regression to detect 16 stroke cases with a more manageable 51 false 

positives, offering a balanced improvement. These findings underscore the value of aggressive 

oversampling like SMOTE-ENN in highly imbalanced clinical datasets, especially when sensitivity is 

prioritized. 

 

Answers to Research Questions 
 

RQ1: How do SMOTE and its variants impact the classification performance of machine learning 

models on imbalanced healthcare datasets? 

SMOTE and its variants substantially impact model performance, particularly for datasets with severe class 

imbalance and for models like Logistic Regression. In moderately balanced datasets such as ASD-Child, 

ensemble models achieved near-perfect performance even without resampling. In contrast, resampling 

techniques for the highly imbalanced Stroke dataset, especially SMOTE-ENN, significantly improved 

recall and F1-score for the minority class. However, this came at the cost of reduced precision and increased 

false positives.  

 

RQ2: Which resampling technique and classifier combination yields the highest precision, recall, F1-

score, and AUC for the minority class? 

In the ASD-Child dataset, ensemble classifiers without or with minimal resampling (SMOTE or Borderline-

SMOTE) consistently delivered the best results across all metrics. For the Stroke dataset, SMOTE-ENN 

combined with Logistic Regression, Gradient Boosting, or XGBoost yielded the highest recall and F1-

score, confirming its effectiveness in detecting rare events despite its lower precision. 

RQ3: What practical insights can be derived for integrating SMOTE-based techniques into AI strategies 

that support innovation, operational efficiency, and better clinical outcomes? 

The findings from this study offer several actionable insights: 

1. Ensemble models such as Random Forest, Gradient Boosting, and XGBoost can deliver excellent 

performance without aggressive resampling for slightly imbalanced healthcare datasets. When 

simpler models like Logistic Regression are used, targeted application of SMOTE or Borderline-

SMOTE can help fine-tune performance, particularly regarding precision and recall balance. 

2. For highly imbalanced datasets, especially those involving rare but critical events such as stroke 

detection, oversampling strategies like SMOTE-ENN are vital for improving recall and capturing 

minority class cases. However, this increase in sensitivity often comes with a trade-off in the form 

of lower precision and higher false positive rates, which must be carefully managed. 

3. From an operational standpoint, healthcare AI systems should adjust their resampling approach 

based on the severity of class imbalance. Moderate imbalance may require minimal resampling, 

while severe imbalance requires more intensive methods such as SMOTE-ENN. 

4. Clinically, boosting recall for critical minority classes, such as patients at risk for stroke, is often 

justifiable even if it results in a decrease in specificity. The early detection of rare but severe 

conditions can lead to significantly better patient outcomes. 

5. Strategically, integrating adaptive resampling pipelines that dynamically respond to dataset 

characteristics, including imbalance ratio and minority class size, can support more equitable, 

efficient, and robust AI decision-making in healthcare settings. 
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Conclusions  
 

This study examined the effectiveness of five resampling techniques: SMOTE, Borderline-SMOTE, 

SMOTE-Tomek, SMOTE-ENN, and SVM-SMOTE in addressing class imbalance within two imbalanced 

healthcare datasets, ASD-Child and Stroke. Four machine learning classifiers (Logistic Regression, 

Random Forest, Gradient Boosting, and XGBoost) were evaluated using six performance metrics: accuracy, 

precision, recall, F1-score, ROC-AUC, and PR-AUC. The results offer several important insights. 

Ensemble models such as Random Forest, Gradient Boosting, and XGBoost consistently achieved strong 

or near-perfect results on the moderately imbalanced ASD-Child dataset, even without resampling. Their 

robustness highlights the advantage of ensemble techniques in managing mild imbalance through 

bootstrapping and decision aggregation.  

 

Logistic Regression, in contrast, showed greater sensitivity to class imbalance and benefited from 

resampling, particularly SMOTE-ENN, which significantly improved recall but often reduced precision. 

For the extremely imbalanced Stroke dataset, all models performed poorly without resampling. SMOTE-

ENN notably enhanced minority class detection across all models, especially Logistic Regression and 

Gradient Boosting, though this improvement came with an increase in false positives. SVM-SMOTE 

provided more balanced improvements by moderately increasing recall while keeping false positives 

relatively low. These findings highlight a fundamental trade-off in healthcare machine learning. 

Improving sensitivity to rare but critical cases often results in more false positives. Therefore, the 

resampling method should align with clinical goals, depending on whether higher recall to capture high-

risk cases or higher precision to reduce false alarms is more desirable.  

 

Limitations 

 

Despite the important findings, this study has several limitations that must be acknowledged: 

1. Dataset Size and Representativeness: The ASD-Child dataset contains a relatively small sample 

size, which may limit generalizability to broader clinical populations. 

2. Feature Simplicity: The datasets consist mainly of demographic and simple clinical variables. 

Results may differ when applied to more complex, high-dimensional datasets like genomics, 

imaging, or EHR data. 

3. Fixed Model Configurations: The study employed standard hyperparameters for all classifiers. 

Future work could examine the interaction between hyperparameter tuning and resampling 

techniques. 

4. Limited Resampling Scope: Only five resampling strategies were explored. Other techniques, 

such as ADASYN, Cluster-SMOTE, and GAN-based methods, could offer alternative benefits. 

5. Exclusion of Cost-Sensitive Learning: The study focused on data-level resampling. Integrating 

algorithm-level approaches such as cost-sensitive learning may yield further improvements, 

especially in extreme imbalance scenarios. 

 

Future Research Directions 

 

Building on the current findings, several avenues for future research are recommended: 

1. Expand the Range of Resampling Methods: Future work should include more advanced 

oversampling approaches such as ADASYN, KMeans-SMOTE, Borderline-SMOTE2, and GAN-

based techniques to provide a broader evaluation of balancing strategies. 

2. Incorporate Cost-Sensitive Learning: Algorithm-level solutions that assign higher 

misclassification costs to minority classes (e.g., cost-sensitive SVMs or decision trees) could be 

explored independently or in combination with resampling for hybrid frameworks. 



Issues in Information Systems 
Volume 26, Issue 2, pp. 70-85, 2025 

 
 

83 

 

3. Apply to Complex Clinical Data: The interaction between resampling and more complex datasets 

(e.g., medical imaging, genomic profiles, multi-modal EHRs) should be studied, especially in high-

dimensional, noisy, or heterogeneous feature spaces. 

4. Explore Federated and Privacy-Preserving Frameworks: As AI in healthcare increasingly 

involves multi-institutional data, adapting resampling for federated learning can help address 

imbalance without compromising patient privacy. 

5. Handle Temporal and Sequential Data: Many healthcare outcomes are time dependent. Future 

work should investigate oversampling for longitudinal data, evaluating methods that preserve 

temporal structure, such as sequence-aware or dynamic resampling. 

6. Evaluate Clinical and Operational Impact: Beyond predictive metrics, research should examine 

how improvements in minority detection affect real-world clinical outcomes, such as earlier 

diagnosis, resource allocation, and patient safety. 

7. Promote Fairness and Ethical AI: Addressing imbalance should be framed within broader goals 

of fairness, especially for vulnerable or underrepresented populations. Future studies should 

consider the ethical implications of misclassification in clinical AI systems. 

This study highlights the importance of strategic resampling in healthcare AI and offers practical guidance 

for model development under class imbalance. Continued research integrating technical, clinical, and 

ethical perspectives is essential for building trustworthy, high-impact decision support systems in health 

domains. 
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