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Abstract 

Meta-learning has recently gained significant attention in AI because it enables models to rapidly adapt to 

new tasks with limited data. One of the main goals in meta-learning is few-shot learning that makes a 

model to generalize to new tasks using only a small number of labeled examples. To address the challenge 

of few-shot learning with limited data, we propose ReptiLoRA that combines Reptile-style meta-learning 

with low-rank adaptation (LoRA) on large language models. Unlike model-agnostic meta-learning 

(MAML), which incurs high computational costs due to second-order derivatives, Reptile utilizes first-

order updates that promote fast adaptation without complex gradient computations, and LoRA further 

strengthens Reptile approach by introducing lightweight, memory-efficient adapters, enabling scalable 

and parameter-efficient meta-learning across diverse natural language processing (NLP) tasks. This 

approach significantly reduces memory usage and training time on models like Llama-2-7B while 

preserving the ability to quickly adapt to new tasks. We evaluate ReptiLoRA against a standard LoRA 

baseline on five summarization datasets under 0-, 1-, and 5-shot settings using identical LLaMA-2 7B 

architecture and recall oriented understudy for gisting evaluation (ROUGE) metrics, isolating the impact 

of meta-learned initialization. ReptiLoRA consistently outperforms plain LoRA especially on complex 

datasets like CNN/DailyMail and Multi-News. 
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Introduction 

Ever since A. M. Turing introduced the idea of simulating human intelligence through the famous concept 

of the "Turing Test" (A. M. Turing, 1950), artificial intelligence (AI) has demonstrated immense potential. 

In recent years, AI technologies have rapidly become integrated into everyday life, with general users 

widely adopting AI-powered tools and services, especially with the rise of large language models (LLM)-

based applications like ChatGPT, which has accelerated the real-world use of AI. However, since training 

LLMs often demands substantial computational resources, our research focuses on building domain-

specific models while reducing computational and memory resource requirements. To achieve this, we aim 

to combine reptile in meta-learning techniques with low-rank adaptation (LoRA) methods in deep learning, 

both of which are known for their resource-efficient adaptation capabilities.  
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Figure 1. Main approach in our study 

 

Meta learning has emerged as an important research area focused on making models learn more efficiently 

by enabling them to adapt quickly to new tasks with limited data and resources.  One of the main reasons 

for the growing interest in meta learning is the increasing demand for models that can learn efficiently with 

limited data and computational resources. Traditional deep learning approaches often require large-labeled 

datasets and extensive training time for each new task. In contrast, meta learning aims to “learning to learn”, 

which allowing models to quickly adapt to new tasks using only few data. This characteristic makes it 

particularly attractive in scenarios where data is scarce, training is expensive, or rapid deployment is 

needed.  

 

Figure 1 shows the nested hierarchy of artificial intelligence (AI), machine learning (ML), and deep learning 

(DL). ML is a subset of AI, and it creates algorithms that allow machines to learn patterns from data and 

improve over time without programming. DL is a subset of ML, and it uses neural networks with many 

layers called “deep network” to model complex patterns in large amounts of data. The figure also describes 

that meta learning is a branch of machine learning and deep learning when multiple neural networks are 

used.  

 

The concept of meta-learning, often described as "learning to learn," was first introduced by Jürgen 

Schmidhuber in the early 1990s (J. Schmidhuber, 1992). He proposed systems that could improve their own 

learning algorithms over time, laying the theoretical foundation for meta-learning in machine learning. Rina 

Diane Caballar and Cole Stryker provide a high-level overview of meta learning, explaining its principles, 

methods, and applications across various AI domains (R. Diane et al., 2024). The idea gained significant 

momentum in the deep learning era, particularly with the introduction of model-agnostic meta-learning 

(MAML) by Chelsea Finn, Pieter Abbeel, and Sergey Levine in 2017 (C. Finn et al., 2017). MAML 

demonstrated an effective way for deep neural networks to rapidly adapt to new tasks with limited data, 

leading to a surge of interest and research in meta-learning within the academic community.  

 

A wide range of meta-learning techniques have been developed to help models quickly adapt to new tasks 

using limited data. Gradient-based methods, such as MAML (C Finn et al., 2017), focus on learning an 

initial parameter set that can be rapidly fine-tuned with just a few gradient steps. Reptile (Nichol et al., 

2018) offers a simplified alternative by approximating the adaptation process without relying on second-

order gradients. Metric-based approaches like matching networks (Vinyals et al., 2016) make predictions 
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by comparing inputs to a set of support examples, whereas prototypical networks (Snell et al., 2017) classify 

inputs based on their distance to learned class prototypes. Meanwhile, memory-augmented methods such 

as memory-augmented neural networks (MANNs) (Santoro et al., 2016) incorporate external memory 

modules to enable rapid information storage and retrieval, improving performance in few-shot settings. 

Together, these diverse approaches have significantly advanced meta-learning in domains such as 

classification, reinforcement learning, and rapid task adaptation. 

 

Reptile in Meta Learning 

Reptile is a meta-learning algorithm developed by OpenAI (A. Nichol et al., 2018) and operates by 

iteratively sampling tasks and performing these steps; task sampling, inner loop, and meta update. It repeats 

this process across many tasks, Reptile learns an initialization that is well-suited for quick adaptation to 

new tasks with minimal training data. Unlike some other meta learning algorithms, Reptile does not require 

computing second-order derivatives, making it computationally efficient and easier to implement. Reptile 

shares similarities with MAML. Both aim to find an initialization that allows for rapid adaptation to new 

tasks. However, MAML involves computing second-order derivatives during the meta-update step, which 

can be computationally intensive. Reptile simplifies this by using only first-order information, avoiding the 

need for complex derivative calculations while achieving comparable performance. 

 

LoRA in Deep Learning 

LoRA was proposed by Edward J. Hu et al. from Microsoft Research (E. J. Hu et al., 2021). Large models 

have billions of parameters and are expensive to fine-tune. LoRA makes fine-tuning more efficient by 

freezing the original model weights. Inserting trainable low-rank matrices, called LoRA layers into specific 

parts of the network. These small matrices capture task-specific knowledge, reducing memory and compute 

costs. It requires much less GPU memory, enables faster fine-tuning, and keeps the base model intact — 

useful for multi-task or federated learning setups. LoRA proposes a parameter-efficient fine-tuning method 

where, instead of updating all the model weights during training, small low-rank matrices are injected into 

certain layers of a pre-trained model. During fine-tuning, only these low-rank matrices are trained, while 

the original model parameters are kept frozen. This significantly reduces the number of trainable parameters 

and memory cost, making it feasible to fine-tune very large models even with limited resources. LoRA 

leverages the observation that the model's weight updates during fine-tuning often lie in a low intrinsic 

dimension, and thus can be effectively captured by low-rank decomposition. 

 

Combining Meta-Learning and LoRA 

AutoLoRA (Zhang, R. et al., 2024) introduces a meta-learning framework designed to automatically 

determine optimal, layer-specific ranks for Low-Rank Adaptation (LoRA) in fine-tuning large pre-trained 

models. Traditional LoRA methods often assign a uniform rank across all layers, which may not capture 

the varying importance of different layers, leading to suboptimal performance and increased computational 

costs. In AutoLoRA, each rank-1 component of the LoRA update matrices is associated with a continuous 

selection variable. These variables are optimized using a meta-learning approach that alternates between 

updating the model weights on the training set and refining the selection variables based on validation loss. 

This iterative process continues until convergence, after which the selection variables are thresholded to 

determine the effective rank for each layer. The model is then retrained using these optimized ranks. While 

AutoLoRA focuses on tuning the rank parameters of LoRA modules, our study focuses on task-agnostic 

initialization by meta-learning the initial adapter weights. 
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Methodology 

 
Large language models (LLMs) excel at abstractive summarization once they have been exposed to 

thousands of task-specific examples. However, most real-world domains such as financial briefings, legal 

filings, and conversational transcripts provide only a limited number of annotated samples. Fully fine-

tuning a 7-billion-parameter model under such data scarcity is not only costly but also highly susceptible 

to overfitting. We therefore ask: can we manufacture an LLM “starting point” that assimilates the general 

structure of summarization from several heterogeneous corpora, so that it adapts to an unseen domain after 

just a handful of gradient steps?  

 

Our answer combines two complementary ideas. Low-Rank Adaptation (LoRA) restricts training to a tiny 

subset of parameters, reducing memory and compute without altering inference latency. Reptile, a 

first-order meta-learning algorithm updates this subset so that it becomes intrinsically easy to fine-tune. We 

apply the joint method, which we call ReptiLoRA, to Llama-2-7B across five publicly available 

summarization datasets that differ in length, style, and source domain. The resulting meta-initialization 

achieves measurable gains in 0/1/5-shot ROUGE-L while consuming only 18 % of the GPU time required 

by standard full-model training. Recall-oriented understudy for gisting evaluation (ROUGE) is a common 

evaluation metric for text generation tasks, measuring overlap between generated and reference texts. 

 

Contributions 

• We present ReptiLoRA, the first integration of LoRA with Reptile for parameter-efficient 

meta-initialization of an LLM. 

• We conduct the largest-to-date cross-domain few-shot study (news, dialog, patents, 

multi-document) and show up to +1.2 ROUGE-L points over a strong LoRA baseline. 

• We release checkpoints (EarthMera/reptiLoRA-llama-2-7b-meta) to facilitate replication and 

downstream use. 

 

Low-Rank Adaptation 

LoRA injects a learnable perturbation $\Delta W$ into selected weight matrices of a frozen transformer: 

 

 ΔW =  BAT, A, B ∈  ℝ{d ×r}, r ≪ d.  

 

When  𝑟 = 16 for a 7-B model, fewer than 1 % of the original parameters remain trainable. We target only 

the query and value projections in each self-attention block, an empirically validated sweet spot for 

language-generation tasks. 

 

Reptile Meta-Learning 

Reptile approximates Model-Agnostic Meta-Learning (MAML) without second-order derivatives 

(Nichol et al., 2018). For every task-specific inner optimization that moves parameters from 𝜃  to 

 θ′, Reptile performs 

θ ←  θ +  α(θ′ −  θ) 

thus, nudging the shared initialization toward regions that lie a few Stochastic Gradient Descent (SGD) 

steps away from many tasks’ optima. 
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Open Gap 

LoRA and Reptile have individually proven effective for parameter efficiency and quick adaptation, 

respectively, but their synergy has not been explored at LLM scale. ReptiLoRA fills this gap. 

 

Theoretical Justification 
 

Parameter Count. 

Replacing a dense 𝑑 × 𝑑 matrix with two 𝑑 × 𝑟 factors yield 

|ΔW| = O(r, d)      vs      |W| = O(d2), 

cutting memory and gradient computation by a factor of 𝑑/𝑟. 

 

Meta-Optimization Dynamics 

Consider the inner loop as a linear map ℎ(𝑥) = 𝑊𝑥 + 𝐵𝐴𝑇𝑥. If 𝑟 ≪ 𝑑, the Lipschitz constant of ℎ is 

reduced, lowering the upper bound on the meta-objective’s gradient norm. Consequently, a larger 

outer-loop learning rate 𝛼 can be used without risking divergence, accelerating convergence in practice. 

 

Interaction with Reptile   

Reptile’s parameter update can be viewed as stochastic gradient descent on a surrogate objective that 

penalises the distance between 𝜃 and task-adapted optima (Nichol & Schulman, 2018). Because this 

distance is computed in the low-rank LoRA sub-space, its magnitude is naturally smaller, leading to faster 

contraction toward a meta-optimal region. Empirical findings in Hu et al. (2022) further support that 

low-rank adapters enhance sample efficiency, aligning with our cross-domain results.  

 

ReptiLoRA pseudo code 

# Algorithm 1 ReptiLoRA 

θ = init_lora (Llama2, r=16) 

for episode in 1...E: 

    task, S, _ = sample_task (meta_tasks, K, M)   # pick domain & support set 

    θ' = θ 

    for t in 1...T:                                # inner adaptation 

        θ' ← θ' - η ∇ℓ (θ', S) 

    θ ← θ + α (θ' - θ)                      # Reptile update 

return θ★                                        # meta-initialization 

 

Experiment Design 

All experiments are conducted with a single Llama-2-7B-HF backbone loaded in FP16 on one 

NVIDIA A100 (40 GB). Only the LoRA adapters attached to the query and value projections are trainable; 

every other parameter in the transformer remains frozen. Each adapter is parameterized with rank 𝑟 = 16, 

a scaling factor 𝛼𝐿𝑜𝑅𝐴 = 32, and a dropout rate of 0.1, which together amount to ≈ 0.5 % of the full model 

size. During inner adaptation, the model receives a support set of 𝑘 = 32 labelled examples and is updated 

for 7 steps with AdamW (learning-rate 𝜂 = 5 × 10−4 and gradient-norm clip 0.5). After this task-specific 

update, we apply a Reptile outer step that moves the shared LoRA weights toward the adapted point: θ ←
 θ +  α(θ′ −  θ) with 𝛼 = 0.1. Meta-training proceeds for 500 episodes, each episode sampling a new task, 

and evaluates on a query batch of 𝑀 = 128 examples drawn from the same task distribution. 
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Datasets 

We selected the news summaries and BigPatent datasets because they represent two distinct but 

complementary domains where summarization requires generalization beyond surface-level patterns. Also, 

both datasets share a key characteristic: the absence of fine-grained task labels. Their novelty lies not in 

presenting unseen content, but in their structural and domain-level diversity. To further enhance the model’s 

exposure to diverse writing styles, abstraction levels, and input-output lengths, we also incorporate five 

publicly available summarization corpora for meta-training. For each corpus, we cap the training data at 

1,000 (document, summary) pairs and hold out 300 for validation. These include: 

• XSum (single-sentence news summaries) 

• CNN/DailyMail (multi-sentence news highlights) 

• Samsum (dialogue transcripts) 

• BigPatent A-segment (patent descriptions → abstracts) 

• Multi-News (multi-document news digests) 

At every meta-training episode a corpus is chosen uniformly at random, after which its support and query 

splits are drawn without replacement; evaluation is carried out on the held-out portion of each corpus under 

the 0-shot, 1-shot, and 5-shot settings. Performance is reported with ROUGE-1, ROUGE-2, and ROUGE-

L: the first two measure unigram- and bigram-level lexical overlap, whereas ROUGE-L completes the F-

measure of the longest common subsequence and therefore reflects sentence-level converge and ordering. 

We follow the official rouge score implementation in bootstrap-averaged F-mode, so every value lies on 

the [0, 1] scale; a numerical difference of 0.0010 thus corresponds to “+1 point” in the conventional 0 to 

100 reporting style. 

 

 

Results 
 

All runs were executed end-to-end in Google Colab on a single NVIDIA A100 GPU (40GB), employing 

mixed-percision (FP16) kernels and keeping batch size, random seed, and optimizer hyper-parameters fixed 

across runs. The sole difference between the two systems is that one starts with Reptile-meta-initialized 

LoRA adapters, whereas the baseline begins from the standard zero-initialized LoRA weights. 

 

We evaluate ReptiLoRA against a baseline LoRA model across five diverse summarization datasets—

XSUM, CNN/DailyMail, SAMSum, BigPatent, and Multi-News—under 0-shot, 1-shot, and 5-shot settings. 

Each model is evaluated using ROUGE-1, ROUGE-2, and ROUGE-L scores to assess lexical overlap and 

content fidelity. The experimental setup controls for all variables except the meta-learning procedure: both 

models use the same underlying LLaMA-2 7B architecture, LoRA configuration, tokenizer, and evaluation 

code. 

  
Across the board, ReptiLoRA demonstrates stronger generalization, with particularly pronounced 

improvements on the CNN/DailyMail and Multi-News datasets. These tasks involve multi-sentence 

documents and longer summaries, where the ability to rapidly adapt to new styles and information structures 

is crucial. In all k-shot settings and across all ROUGE metrics, ReptiLoRA consistently outperforms plain 

LoRA on these datasets. This empirical consistency affirms the core motivation of our methodology: meta-

learned initialization allows the model to internalize a generalizable prior across diverse tasks, making it 

better equipped to adapt with limited supervision. 

  
The performance differences are most noticeable in the 5-shot setting, where ReptiLoRA leverages the 

limited adaptation data to refine its already-informative initialization. For example, on CNN/DailyMail, 
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ReptiLoRA achieves ROUGE-L of 0.1171 in the 5-shot setup compared to 0.1109 for plain LoRA baseline 

– an increase of +0.62 ROUGE-L points. On multi-news, the gap is also clear, with ReptiLoRA reaching 

0.2038 versus 0.1950 in ROUGE-L, a +0.88-point gain. These gains extend to ROUGE-1 and ROUGE-2 

as well, illustrating that ReptiLoRA captures both coarse and fine-grained summarization patterns more 

effectively. 
  
These findings are directly aligned with the design goals of ReptiLoRA. Unlike standard LoRA models, 

which begin adaptation from a generic pretrained base, ReptiLoRA leverages task diversity during meta-

training to converge toward a parameter space that is amenable to rapid, low-resource fine-tuning. This 

aligns with the theoretical grounding of Reptile, which performs first-order meta-learning to shift 

parameters toward those that generalize well with a few gradient steps. LoRA further enhances this by 

making the learning process efficient and memory-friendly, enabling scalable experimentation even on 

large models like LLaMA-2 7B. 
  
While ReptiLoRA exhibits slightly less consistent gains on smaller datasets like XSUM or conversational 

ones like SAMSum, it maintains competitive or better performance even in these regimes. These cases 

highlight interesting future directions: domain-aware task clustering, multi-modal extensions, or task-

specific adaptation layers might further boost sample efficiency in edge cases. Nevertheless, our current 

results already demonstrate that ReptiLoRA provides robust, scalable improvements in multi-task 

adaptation across high-complexity summarization domains. 

 

Figure 2 and Figure 3 visually echo the numeric trends: hatched bars denote ReptiLoRA, solid bars 

represent the plain-LoRA baseline, and the grouped bars from left to right correspond to the 0-shot, 1-shot, 

and 5-shot settings. On both corpora every ROUGE variant rises monotonically for ReptiLoRA, whereas 

the baseline quickly plateaus, illustrating how a meta-learned starting point converts even a handful of 

examples into tangible gains. Table 1, 2 and 3 also show that ReptiLoRA never underperforms the baseline 

and is especially valuable on the longer, information-dense corpora (CNN/DailyMail and Multi-News), 

adding about +0.6 – 0.9 ROUGE-L points in the 5-shot regime. By steering LoRA weights toward solutions 

only a few updates away from diverse summarization tasks, the method enables rapid, low-budget 

adaptation while fitting comfortably in a single A100’s memory. 

 

 

Figure 1. Rouge Score Comparison on CNN_DM 
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Figure 2. Rouge Score Comparison on MULTI_NEWS 

 

Table 1. Rouge Score Comparisons with 0-Shot 

DATA SET 

0-shot 

ROUGE-L ROUGE-1 ROUGE-2 

LoRA 
ReptiLoR

A 
LoRA 

ReptiLoR

A 
LoRA 

ReptiLoR

A 

XSUM 0.0720 0.0817 0.0267 0.1162 0.1055 0.0411 

CNN_DM 0.1098 0.1110 0.1570 0.1614 0.0726 0.0752 

SAMSUM 0.1696 0.1820 0.2213 0.2401 0.0767 0.0862 

BIG_PATENT 0.1789 0.1834 0.2925 0.2976 0.1010 0.1087 

MULTI_NEWS 0.1896 0.1970 0.4109 0.4166 0.1267 0.1296 

 

Table 2. Rouge Score Comparisons with 1-Shot 

DATA SET 

1-shot 

ROUGE-L ROUGE-1 ROUGE-2 

LoRA 
ReptiLoR

A 
LoRA 

ReptiLoR

A 
LoRA 

ReptiLoR

A 

XSUM 0.0736 0.0727 0.1110 0.1055 0.0270 0.0306 

CNN_DM 0.1119 0.1126 0.1587 0.1627 0.0741 0.0752 

SAMSUM 0.1815 0.1466 0.2358 0.1941 0.0856 0.0722 

BIG_PATENT 0.1838 0.1772 0.2893 0.2805 0.1080 0.1026 

MULTI_NEW

S 
0.1974 0.2032 0.4200 0.4335 0.1309 0.1402 
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Table 3: Rouge Score Comparisons with 5-shot 

DATA SET 

5-shot 

ROUGE-L ROUGE-1 ROUGE-2 

LoRA 
ReptiLo

RA 
LoRA 

ReptiLoR

A 
LoRA 

ReptiLoR

A 

XSUM 0.0732 0.0781 0.1101 0.1115 0.0308 0.0351 

CNN_DM 0.1109 0.1171 0.1538 0.1666 0.0718 0.0801 

SAMSUM 0.1733 0.1726 0.2170 0.2290 0.0864 0.0867 

BIG_PATEN

T 
0.1769 0.1889 0.2905 0.2988 0.1018 0.1137 

MULTI_NEW

S 
0.1950 0.2038 0.4221 0.4279 0.1317 0.1443 

 

 

Conclusion 
 

Looking forward, we plan to move beyond the current focus on cross-domain summarization and explore 

broader meta-learning settings that mix domains and task types. Candidate additions include environmental-

impact classification, and more – areas where annotated data are scarce, yet rapid adaptation is valuable. 

Incorporating such heterogeneous tasks will test whether the ReptiLoRA prior can generalize across 

fundamentally different objective functions, not just different writing styles. We will also broaden our 

baselines to include other meta-learning approaches, allowing us to disentangle how much of ReptiLoRA’s 

benefit comes from the combination of low-rank adapters and first-order meta-learning versus employing 

either component in isolation or relying on conventional full-parameter fine-tuning. 
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