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Abstract 

The rapid adoption of artificial intelligence (AI) in cybersecurity has introduced significant challenges in 

terms of interpretability, trust, and regulatory compliance. This systematic literature review examines how 

Explainable AI (XAI) bridges the gap between advanced threat detection and human understanding by 

enhancing transparency in AI-driven security systems. The study synthesizes research across five key 

domains: technical foundations of XAI, human-AI collaboration, regulatory compliance, adversarial 

robustness, and scalability. Findings reveal that XAI techniques—such as Shapley Additive Explanations 

(SHAP) and attention mechanisms—improve analysts' trust and decision-making, while addressing biases 

and legal mandates, including the General Data Protection Regulation (GDPR). However, trade-offs 

between explainability and performance persist, necessitating future work on real-time XAI and the 

development of standardized evaluation metrics for this purpose. This review highlights XAI’s 

transformative potential in developing resilient and accountable cybersecurity frameworks. 

Keywords: cybersecurity, explainable AI, opacity, adversarial attacks, human-AI collaboration, regulatory 

compliance. 

Introduction 

The digital age has ushered in unprecedented advancements in artificial intelligence (AI), revolutionizing 

cybersecurity with sophisticated threat detection and response capabilities. However, as AI systems grow 

more complex, their opacity has become a double-edged sword, enhancing security while eroding human 

trust and regulatory compliance. The problem that plagues modern cybersecurity is not merely the detection 

of threats but the interpretability of AI-driven decisions, creating a critical gap between machine 

intelligence and human understanding. This systematic literature review, titled “Improving Cybersecurity 

Through Explainable Artificial Intelligence," rigorously examines how Explainable AI (XAI) bridges this 

gap, ensuring transparency, fostering trust, and aligning with legislative requirements. 

Problem Statement 

The problem that this systematic literature review addresses is the growing opacity of AI-driven 

cybersecurity systems, which creates a critical gap between advanced threat detection capabilities and 

human understanding. As organizations increasingly rely on AI for threat identification and response, the 

"black box" nature of many machine learning models—particularly deep learning systems—undermines 

trust, complicates regulatory compliance, and hinders effective human-AI collaboration in security 
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operations. This opacity manifests in three key challenges: (1) security analysts struggle to interpret and 

validate AI-generated alerts, leading to delayed or inadequate responses; (2) organizations face difficulties 

meeting legal requirements for explainable decision-making under frameworks like GDPR and CCPA; and 

(3) the lack of transparency exacerbates vulnerabilities to adversarial attacks that exploit AI’s decision-

making processes.  

 

Background of The Study 

 
All five domains of the examined works are related, each exploring important topics in Explainable 

Artificial Intelligence (XAI) in cybersecurity. These domains outline the role XAI plays in enhancing 

transparency, trust, and improving the operational efficiency of threat detection and response systems. 

 

The Basics of AI That Can Be Easily Understood 

This area of AI studies the approaches and algorithms necessary to make AI systems easier to understand. 

Studies highlight two primary approaches: (1) Model-Agnostic Techniques: To explain the outcomes of 

networks classified as black box, we can turn to Shapley Additive Explanations (SHAP) and Local 

Interpretable Model-agnostic Explanations (LIME). For example, Chen et al. (2023) reveal that SHAP 

values help mark out major characteristics driving malware classification, helping analysts review and 

support the decisions made by AI. (2) Intrinsic Explainability: DTs and attention-based neural networks are 

two types of models that can easily be understood. Results from a study by Adadi and Berrada (2023) reveal 

that attention mechanisms in intrusion detection support analysts' work by highlighting key behaviors in 

networks, enabling them to identify threat patterns. It is challenging to balance between creating easy-to-

understand models and those that can answer the key questions of machine learning. 

 

Human-AI Collaboration in Cybersecurity 

A sample of expert research on the ways cybersecurity professionals work with AI tools is covered. Key 

themes include: (1) Sensemaking Theory (Weick, 1995): This theory explores how security teams provide 

context to the alarms generated by AI. Based on Lu’s research, it is challenging for analysts to interpret AI 

results, which leads to a slower response. (2) Explainable AI (XAI) Dashboards: Studies, such as the one 

by Shreeve et al. (2023), show that using interactive dashboards reduces the time needed to resolve an 

incident by approximately 30% through visual representations of the AI decisions. (3) Trust and Adoption: 

A survey revealed that nearly two-thirds of security experts do not trust AI alerts without a clear explanation 

(Kushwaha, 2023). Still, systems that are easy to understand make analysts more confident and often 

prompt them to act on those suggestions faster (Rudin, 2022). 

 

Regulatory and Ethical Compliance 

As more data protection laws are implemented, this area of AI studies how XAI should comply with legal 

and ethical regulations. (1) The General Data Protection Regulation (GDPR) is followed to ensure data 

protection. According to Weller, the “right to explanation” under Article 22 requires businesses to explain 

when their security systems have made automated decisions. By offering features like audit trails, 

techniques like SHAP and LIME aid in meeting such mandates. (2) Bias Mitigation: Studies by Mehrabi et 

al. (2021) indicate that network data from some areas of the globe is more likely to be incorrectly identified 

as malicious by threat detection AI. Problems solved by machine learning often employ fairness constraints 

to ensure fair results. (3) Accountability: It is challenging to identify liable parties when an AI system lacks 

transparency. With more precise explanations in an AI model, it is easier to point out who or what is at fault 

when something goes wrong, and this lowers legal risks (Azam et al., 2024). 

 

How Explainable AI (XAI) can work during adversarial situations 
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As AI security is threatened, this area examines how to best defend against such threats through: (1) 

Adversarial Attacks on Explanations. In their study, Xu et al. (2023) explain that hackers can exploit SHAP 

to create inputs that evade detection mechanisms. (2) Defensive Strategies: Utilizing adversarial training 

and developing robust features are two ways suggested to enhance the security of XAI processes. (3) Trade-

offs: Many robust explainers come at the cost of speed, and some demonstrate a 40% increase in 

computational requirements (Shu et al., 2022). 

 

Scalability and Real-Time Performance 

Large-scale deployments of XAI bring their own set of issues: (1) Computational Overhead: Handling high-

dimensional network data can slow down the identification and handling of threats. Li et al. found that 

adding SHAP-based explanations requires an additional 250 ms for each alert in large-scale services. (2) 

Edge Computing Solutions: There are lightweight XAI models, such as pruned neural networks, that enable 

AI to run on devices with limited resources. (3) Federated Learning: Based on Chen et al. (2022), 

organizations can collaborate by exchanging information on threats while keeping their raw data completely 

private. All these domains provide an idea of XAI serving as a bridge between AI’s power and what humans 

utilize in cybersecurity. Although technological progress facilitates understanding of AI, other societal 

factors and compliance matters also influence its use. Future research must address:  

1. Real-Time Explainability: Developing low-latency, explainable AI for networks that process 

information efficiently. 

2. Standardized Metrics: Establishing guidelines for the level of detail and clarity required in any 

explanation. 

3. Cross-Domain Collaboration: Applying what is learned in human-computer interaction, 

cybersecurity, and AI ethics.   

Working on these points may potentially turn XAI from a conceptual gain to a necessary tool for 

cybersecurity. 

 

Objectives and Research Questions 

 
The primary objective of this review is to analyze how XAI can bridge the gap between sophisticated AI-

driven threat detection and human comprehension. The following Research questions guided the review: 

1. What does the literature reveal about the current state of XAI in cybersecurity? 

2. How can XAI enhance collaboration between AI systems and human analysts in threat detection 

and response? 

3. What are the future directions for XAI in improving cybersecurity frameworks? 

By addressing these questions, this review contributes to the ongoing discourse on AI transparency, 

regulatory compliance, and human-AI collaboration in the field of cybersecurity. 

 

 

Methodology 
 

This study employs a systematic literature review (SLR) methodology to ensure rigor, transparency, and 

reproducibility. The SLR adheres to the PRISMA (Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses) framework, which structures the review process into four phases: identification, screening, 

eligibility assessment, and inclusion. The methodology is designed to minimize bias and provide a 

comprehensive synthesis of existing research on XAI in cybersecurity. To examine the importance of 

Explainable AI (XAI) in cybersecurity, this study used a detailed and stepwise process. The first stage 

involved searching Scopus (n=1,054), Web of Science (n=527) and Google Scholar (n=40) which led to 

1,247 initial records. We applied the PRISMA framework to exclude irrelevant records and retain those 

that met our quality standards. The initial step removed 365 articles that had not been peer-reviewed or 
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written in the English language. A total of 452 papers were excluded during the final review because they 

did not relate to XAI in cybersecurity, and the analysis focused on the remaining 169 studies. 

 
Table 1. Database Search Results and PRISMA Filtering Process 

 

Exclusion Breakdown: 

• Non-peer-reviewed articles: 178 

• Non-English language: 187 

• Duplicates removed: 250 

• Not focused on XAI in cybersecurity: 452 

• Insufficient empirical/theoretical content: 104 

 

 

 
 

Figure 1. Research methodology applied (Authors’ diagram) 

 

To promote transparency and reproducibility, the review method was carefully set up. The entire selection 

process was recorded, including mention of the criteria required for selection: (1) focus on different XAI 

techniques as they are used in cybersecurity fields, (2) provide either empirical or theoretical results, and 

(3) make sure the work is accepted and printed in peer-reviewed publications. The style used here aligns 

Stage Database 
Initial 

Records 

After 

Deduplication 

After 

Screening 

Final 

Inclusion 

Identification Scopus 1,054 891 456 87  
Web of Science 527 445 223 54  
Google Scholar 40 35 28 15  
Reference 

Snowballing 

12 12 11 9 

 
Manual Search 8 8 7 4 

Total All Sources 1,641 1,391 725 169 
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with the rules in Systematic Literature Review and provides a well-rounded view of technical, operational, 

and human factors in the final manuscript. 
 

Search Strategy and Data Collection 

Boolean operators and well-chosen keywords were used in the search to represent the overlap between XAI 

and cybersecurity studies. The search only looked at engligh only  peer reviewed journals and conference 

proceedings publications in the computer science, security, AI/ML domain databases  during the period of 

January 2018 through December 2024. The search strategy is further detailed in Table 2. 

 
Table 2. Search Strategy and Keywords 

Category Keywords 
Boolean 

Logic 

XAI Concepts "Explainable AI", "XAI", "Interpretable Machine Learning", "Transparent 

AI", "AI Explainability" 

OR 

Cybersecurity 

Domains 

"Cybersecurity", "Threat Detection", "Intrusion Detection", "Malware 

Detection", "Security Analytics" 

OR 

Technology 

Methods 

"Machine Learning", "Deep Learning", "Neural Networks", "SHAP", 

"LIME", "Attention Mechanisms" 

OR 

Combined Query (XAI Concepts) AND (Cybersecurity Domains) AND (Technology 

Methods) 

AND 

 

The database queries were exported to citation management software for deduplication and manual 

screening. We continuously refined the search strategy to minimize selection bias. For instance, examining 

references in significant papers identified 12 additional studies not captured in the initial search. This 

iterative process helped include comprehensive studies while maintaining methodological rigor. The 

analysis covered several technical methods (SHAP, LIME), human factors (analyst trust), and regulatory 

aspects (GDPR compliance). Studies that discussed XAI and cybersecurity in direct relation were 

prioritized for inclusion. The detailed criteria are presented in Table 3. 

 
Table 3. Inclusion and Exclusion Criteria 

 

Criteria Type Inclusion Criteria Exclusion Criteria 

Content Scope 

• Designed or evaluated XAI methods for 

cybersecurity 

• Addressed explainability in AI-based 

security systems 

• Examined human-AI collaboration in 

security operations 

• Opinion pieces without empirical validation 

• Theoretical research without a cybersecurity 

application 

• Studies focused solely on AI performance 

without explainability 

Publication 

Quality 

• Peer-reviewed journals and conferences 

• Empirical studies with experimental 

validation 

• Systematic reviews and meta-analyses 

• Non-peer-reviewed preprints 

• Workshop papers without full validation 

• Industry reports without academic rigor 

Methodological 

Rigor 

• Clear methodology and experimental 

design 

• Reproducible results and datasets 

• Statistical significance testing, where 

applicable 

• Insufficient methodological detail 

• Non-reproducible experiments 

• Lack of validation metrics 

Relevance 

• Direct application to cybersecurity use 

cases 

• Novel XAI techniques or applications 

• Comparative analysis of explanation 

methods 

• Tangential mention of cybersecurity 

• General AI/ML papers without security focus 

• Duplicate findings from the same research 

group 



Issues in Information Systems 
Volume 26, Issue 3, pp. 387-400, 2025 

 
 

392 

 

A third-phase exclusion process involved full-text reviews to ensure that studies aligned with the research 

questions. Papers focusing solely on AI performance without explainability aspects were excluded. This 

strict selection process ensured that only the most relevant studies examining XAI's role in improving 

transparency, trust, and effectiveness of cybersecurity measures were included. 

 

The information was systematically extracted from each study to focus on key insights. Variables included 

Techniques such as attention mechanisms and rule-based descriptions, as well as their applications in 

cybersecurity, including malware detection and intrusion prevention, and evaluation metrics that assessed 

the faithfulness of the explanations and analyst trust ratings. Analyzing the papers, it was established that 

68% of them mentioned that improving the accuracy of a model often makes it more difficult for people to 

understand.  Information was systematically extracted from each study focusing on essential insights. The 

coded variables and their distribution are presented in Table 4. 

 
Table 4. Data Extraction Variables and Study Distribution 

 

During the synthesis process, it became apparent that some issues were specific to different fields. For 

instance, 42 studies have pointed out that adversarial attacks can test XAI explanations, making it crucial 

to ensure that explanations are robust. After 2021, more research adopted topics related to instant XAI 

software, indicating that the industry needed more scalable methods. This process enables us to assess the 

current state of research and also highlights issues such as the lack of standard measures for cybersecurity 

AI applications. 

 

Results 

 
The results showed that these techniques help people understand the decisions made by AI in cybersecurity. 

When it comes to classifying malware and identifying network anomalies, SHAP and LIME were the 

primary techniques employed. Security analysts found the approach helpful because it reduced false 

positives by up to 30% in tested environments. Human factors proved to be crucial in determining the 

results of XAI. Researchers have frequently found that security analysts are more likely to trust AI-

Variable Category Specific Variables Number of Studies Percentage 

XAI Techniques SHAP-based explanations 67 39.6%  
LIME applications 45 26.6%  
Attention mechanisms 38 22.5%  
Rule-based explanations 34 20.1%  
Decision trees/interpretable models 28 16.6% 

Cybersecurity Applications Malware detection 89 52.7%  
Network intrusion detection 76 45.0%  
Threat intelligence 43 25.4%  
Incident response 31 18.3%  
Vulnerability assessment 22 13.0% 

Evaluation Metrics Detection accuracy 156 92.3%  
Explanation fidelity 78 46.2%  
Analyst trust ratings 52 30.8%  
Response time improvements 41 24.3%  
False positive reduction 67 39.6% 

Study Methodology Experimental validation 134 79.3%  
Case study approach 58 34.3%  
User studies with practitioners 42 24.9%  
Theoretical framework development 35 20.7% 
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generated alerts when they understand the reasons behind them. Analysts reacted to incidents approximately 

40% faster after their systems were equipped with new dashboard features.  

 

In approximately 60% of the cases examined, regulatory standards triggered the adoption of XAI. Many 

organizations chose to use XAI because the GDPR’s “right to explanation” clause was widely mentioned. 

However, solutions driven by compliance efforts often choose simplicity over complexity, which may 

prevent them from detecting all kinds of threats. There are dangers related to adversarial threats in XAI 

systems. In nearly 15% of all studied attacks, attackers utilized different outputs to either evade detection 

or deceive analysts. It made it clear that more powerful explanation methods must withstand problems 

created by adversaries. It was regularly observed that scaling programs caused difficulties in practical 

settings. Although XAI techniques made things clearer, using them to increase transparency caused a 

slowdown in high-speed systems. Explanation, caching, and model distillation appeared useful, but they 

still required some refinement before becoming optimal. 

 

Several papers that brought together cybersecurity, human-computer interaction, and ethics proved to be 

effective. Those studies that applied these frameworks reported that users felt more satisfied, and their 

actions with the software more closely aligned with the organization’s business processes. Thanks to 

federated XAI, organizations can pool threat data without compromising anyone’s privacy. With these 

approaches, businesses could collaborate and keep information private, but technical problems made it 

difficult actually to implement them. Because there were no consistent measurement standards, progress 

was hard to achieve. There are very few studies that develop quantitative strategies for evaluating 

explanation quality, suggesting that our community should agree on standard methods for this purpose. 

Many believe that Neurosymbolic AI will be important because it aims to make AI work effectively and be 

transparent by combining symbolic and deep learning ideas. At an early stage, it was clear these techniques 

defended better against adversarial attacks than those based solely on statistics. Focusing on users was 

usually not considered enough. Although analyst demands are known, only 25% of research included end-

users in developing XAI, indicating a discrepancy between theory and practice. 

 
Table 5.  Key Findings Summary Statistics 

Finding Category Metric Value 
Studies 

Reporting 

Performance Trade-offs Accuracy loss for explainability 15-20% average 115 studies  
Computational overhead 250ms average 

delay 

89 studies 

Human Factors Trust improvement with 

explanations 

40% increase 52 studies 

 
False positive reduction Up to 30% 67 studies  
Incident response time 

improvement 

30-40% faster 41 studies 

Regulatory Compliance GDPR-driven XAI adoption 60% of cases 102 studies  
Compliance as primary 

motivation 

47% of 

organizations 

76 studies 

Adversarial Robustness Studies reporting XAI 

vulnerabilities 

42 studies 24.9% 

 
Attack success rate on 

explanations 

15% of tested cases 25 studies 

Implementation 

Challenges 

Real-time performance issues 78% of studies 132 studies 

 
Scalability concerns 65% of studies 110 studies 
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During the synthesis process, several domain-specific issues emerged. For instance, 42 studies (24.9%) 

highlighted that adversarial attacks can compromise XAI explanations, emphasizing the need for robust 

explanation methods. Following 2021, research efforts intensified, focusing on real-time XAI applications, 

which underscored industry demand for scalable solutions. This analysis revealed the current state of 

research and identified gaps, including the absence of standardized evaluation metrics for cybersecurity 

XAI applications. 

 

Discussion 

 
The integration of explainable artificial intelligence into cybersecurity represents a paradigmatic shift that 

addresses the fundamental tension between the sophistication of algorithms and human comprehension in 

security operations. As cybersecurity systems increasingly rely on complex machine learning models to 

detect sophisticated threats, the opacity of these systems creates significant barriers to practical threat 

analysis, regulatory compliance, and organizational trust. The explainability gap manifests particularly 

acutely in security contexts where analysts must make rapid, high-stakes decisions based on algorithmic 

recommendations, yet lack insight into the reasoning processes underlying these recommendations. 

Traditional black-box approaches, while demonstrating superior detection capabilities, fail to provide the 

interpretative frameworks necessary for security professionals to validate, contextualize, and act upon AI-

generated insights, thereby limiting their practical utility in operational environments. 

The review is structured thematically as outlined in the diagram below: 

 

Figure 2. Workflow diagram of XAI integration in cybersecurity (Oriaro 2025) 

 

Figure 2 illustrates the effect of the explainability gap on security. The areas covered in the study include; 

evolution of AI in cybersecurity – tracing the shift from rule-based systems to deep learning, 2) current 

applications of AI in cybersecurity – examining threat intelligence, malware detection, and automated 

response systems; 3) challenges in AI driven cybersecurity – addressing opacity, adversarial attacks, and 

data bias; 4) XAI techniques in cybersecurity – evaluating methods for improving model interpretability; 
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and future directions – identifying emerging trends and research gaps. The workflow diagram illustrates 

the systematic approach to addressing explainability challenges in cybersecurity through four 

interconnected domains. The evolution of AI in cybersecurity traces the technological progression from 

rule-based systems to sophisticated deep learning architectures, highlighting how increased model 

complexity has exacerbated interpretability challenges. Current applications demonstrate AI's deployment 

across threat intelligence, malware detection, and automated response systems, where the need for 

explainable outputs becomes critical for operational effectiveness. Implementation challenges encompass 

the technical difficulties of integrating XAI methods with existing security infrastructures, including 

performance trade-offs, computational overhead, and adapting explanation techniques to cybersecurity-

specific requirements. Future directions identify emerging research priorities, including real-time 

explainability, adversarial robustness of explanation methods, and the development of standardized 

evaluation frameworks. The theoretical foundations provide the conceptual underpinning through system 

theory, sense-making frameworks, and continuous learning paradigms that inform adaptive XAI techniques 

and methodological approaches, creating a feedback loop that enhances both the technical implementation 

and practical application of explainable AI in cybersecurity contexts. 

 

 

The Historical Development of AI in Cybersecurity 

 
The origins of AI in cybersecurity can be traced back to rule-based expert systems developed in the 1980s 

and 1990s, which later evolved into more sophisticated machine learning (ML) approaches (Denning, 1987; 

Intrusion Detection Expert System, 1991; Nguyen et al., 2019). Expert systems, such as IDES (Intrusion 

Detection Expert System), developed at SRI International, represented the first systematic attempt to 

automate threat detection using knowledge-based approaches (Lunt, 1993). Rule-based systems focused on 

detecting well-known attack patterns through signature matching, providing accurate detection for known 

attack types but proving inadequate against novel threats that deviated from established patterns (Anderson, 

1980). 

 

Machine learning, on the other hand, emerged in cybersecurity during the 1990s with early implementations 

focusing on statistical anomaly detection (Lane & Brodley, 1999; Forrest et al., 1996). Support Vector 

Machines (SVMs) gained prominence in the early 2000s due to their effectiveness in binary classification 

tasks, which are essential to threat detection (Mukkamala et al., 2002; Chen et al., 2018). Decision trees 

provided interpretable classification models that security analysts could understand and validate (Kruegel 

& Vigna, 2003). However, early ML models required extensive feature engineering and preprocessing to 

handle the high-dimensional nature of security data (Axelsson, 2000). 

 

Big data analytics also transformed cybersecurity in the late 2000s as organizations struggled with 

exponentially growing security log volumes (Dean & Ghemawat, 2008). MapReduce frameworks enabled 

distributed processing of massive security datasets, laying the foundation for modern Security Information 

and Event Management (SIEM) systems (Chen et al., 2012). IBM's QRadar and Splunk emerged as 

commercial implementations of these distributed analytics concepts, marking the first widespread 

integration of AI into operational security centres (Silberschatz & Galvin, 2009). Furthermore, deep 

learning revolutionized cybersecurity AI by eliminating the need for manual feature engineering through 

the automatic extraction of features from raw data (LeCun et al., 2015). Convolutional neural networks 

demonstrated superior performance in malware detection by analysing binary file structures as images 

(Nataraj et al., 2011; Gibert et al., 2018). Recurrent neural networks have proven effective for analyzing 

temporal attack sequences in network traffic (Vinayakumar et al., 2017; Kim et al., 2016). However, the 

rise of adversarial machine learning highlighted new vulnerabilities in AI-based security systems, with 

attackers developing sophisticated evasion techniques (Chakraborty et al., 2018; Biggio & Roli, 2018). The 
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emergence of adversarial attacks created an ongoing arms race between security AI and malicious actors 

seeking to exploit AI decision-making processes (Carlini & Wagner, 2017). 

 

The Shift to Adaptive and Autonomous AI Systems 

Reinforcement learning and neural networks have revolutionized threat response mechanisms, as 

emphasized in the study by Li et al. (2020). Another study by Li et al. (2020) explains that through 

reinforcement learning, the detection models of security systems can be updated as soon as new attack 

patterns are discovered, as opposed to days, which now takes only minutes. The study explored insights 

into AIOps platforms that automate security operations. Prasad and Rich (2018) explain how such platforms 

integrate anomaly detection, incident correlation, and response automation, which helps reduce human 

analyst load. Further innovations featured include systems that utilize both supervised learning and 

unsupervised learning. Sarker (2023) explains that such multi-aspect approaches enhance the availability 

of better threat detection, as these methodologies work based on the different strengths of various 

techniques. It also elaborates on how these hybrid models overcome certain limitations that can be observed 

in more strictly deep learning techniques in security scenarios. 

 

Adversarial attacks were also examined as a critical challenge for modern security AI. The work of Papernot 

et al. (2016) provides valuable insight into how an attacker can deceive an AI system by providing inputs 

designed explicitly for that purpose. The review identifies federated learning as an emerging paradigm for 

collaborative security AI. Chen et al. (2022) further illustrate that since personal data is enormously 

valuable, this approach allows organisations to gain collective threat intelligence while respecting data 

privacy.  The review traces AI's historical trajectory in cybersecurity, maintaining a critical perspective on 

both its achievements and ongoing challenges. Every technology is described from the standpoint of the 

changes in threats and operations that surround it. Still, qualitative and quantitative analyses of the 

organization’s adoption patterns, as well as ROI factors, may enhance the practicality of this historical 

review. 
 

 

Current Applications and Challenges of AI in Security Operations 

 

 
Modern cybersecurity frameworks increasingly rely on AI-driven threat intelligence to process vast 

volumes of unstructured data, such as dark web forums, malware reports, and network logs. Natural 

Language Processing (NLP) techniques, as examined by Samtani et al. (2020), enable automated extraction 

of actionable insights from these heterogeneous sources. Transformer-based models, such as BERT, for 

instance, classify threat actor communications with over 85% accuracy, significantly reducing the burden 

of manual analysis. The integration of graph neural networks further enhances correlation capabilities, 

mapping relationships between seemingly unrelated IoCs (Indicators of Compromise) to reveal coordinated 

attack campaigns.  

 

Despite these advancements, the review highlighted persistent data quality challenges that undermine the 

reliability of AI. Barreto et al. (2020) explained that 40% of security datasets are biased, characterized by 

the inclusion of biased data, such as one type of attack or another. For instance, anomaly detection systems 

trained on standard network traffic data lacking recent and diverse threats perform poorly when it comes to 

detecting such attacks, leading to false negatives. The review chapter also found that the problems of noise 

and a lack of domain-specific data underscore the importance of constantly retraining the models.  The 

review revealed that real-time anomaly detection is more effectively achieved with the help of AI than with 

a signature-based approach. To elaborate, Chalapathy and Chawla (2019) conducted a study standardizing 
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the recall accuracy of autoencoders in detecting a zero-day exploit at around 92%, while for rule-based 

systems, it was 65%. 

 

Opacity and Lack of Interpretability in Modern AI Systems 

An analysis of how increasing model complexity created critical interpretability challenges was conducted. 

The findings indicate that, although deep learning achieved an enhanced level of detection accuracy 

(Ganesan et al., 2023), human-interpretable decision-making processes were compromised. Statistics 

revealed that security specialists were only able to understand 38% of the alerts generated by contemporary 

neural networks (Azam et al., 2024). The “black box” revealed problems from technical, organizational, 

and regulatory perspectives. Kushwaha (2023) highlighted that when there is no clarity, two-thirds of 

security experts are unwilling to take prompt action on tips provided by AI.  

 

The study connects the Analyst-AI relationship through the lens of Sensemaking theory. This theory 

explicates how security professionals fail to map the results generated and provided by AI into their mental 

models, as described by Lu’s (2017) model in Fig. 3. This theoretical grounding elevates the discussion 

beyond technical limitations to human factors in security operations. Consequently, the review findings 

revealed novel approaches to addressing opacity. The extenders, such as attention mechanisms and layer-

wise relevance propagation, are relevant, with pilot implementations already deployed on different 

detectors, resulting in approximately 89% accuracy in terms of explanation while maintaining detection 

abilities (Mahapatra & Chakraborty, 2023). The balanced assessment recognizes these as initial attempts 

on the path to solving the interpretability problem, rather than fully satisfactory solutions. 

 

 

The Emergence and Techniques of Explainable AI (XAI) 

 
The study reveals that XAI serves as a regulatory requirement for compliance purposes when addressing 

GDPR and CCPA requirements (Weller, 2019). Organizations that operate with unexplained artificial 

intelligence systems may face legal penalties for decisions made by their AI systems that cannot be justified.  

The research examines actual XAI implementations through its investigation of malware identification 

alongside intrusion detection system (IDS) functionality. Adadi & Berrada (2023) demonstrate how SHAP 

values identify crucial features for malware detection models (Chen et al., 2023) as explained by analysts 

during validation. 

 

Implementation Challenges of XAI 

While advocating for XAI, the study addresses implementation barriers, particularly the accuracy-

explainability trade-off (Liu et al., 2021). Closely related is the truth that ‘complex models’ like 

convolutional neural networks (CNNs) sharply reduce interpretability for the pursuit of high accuracy. The 

evidence suggests that it may lose between 15 and 20% of its accuracy if it transitions from opaque models 

to an interpretable model, such as a decision tree.  Another essential issue for XAI systems is adversarial 

attacks, where the system’s output can be manipulated in a way to mislead the user (Xu et al., 2023). To 

this end, instead of evaluating if explanations produced by deep models can pass the ‘truthful’ signal test, 

analysts should ensure that explanations offered by attackers are ‘fooling’ or not; by reverse-engineering 

legitimate explanations of inputs to mimic those of adversarial inputs, attackers can easily bypass detectors 

and provide plausible inputs that seem innocuous to analysts.  Scalability issues in XAI showed that 

techniques like LIME struggle with high-dimensional network traffic data (Shu et al., 2022). A real-time 

environment requires less complex methods, yet most existing methods for explanation are complex. This 

research proposes two new tiers of explanation hierarchy for critical alerts, recommending items for further 

analysis, as well as a reasonable and practical balance to achieve the best results in settings with limited 

resources. 
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Implications and Limitations 

 
Using Explainable AI for cybersecurity can bring numerous benefits, but it's essential to overcome the 

challenges that arise from its application. A significant challenge arises because easier-to-understand 

models often show reduced accuracy compared to opaque models. There is also the challenge that the 

performance requirements of XAI in real time can slow down the identification and handling of hazards in 

high-speed environments. Moreover, there is no commonly accepted method for measuring the 

effectiveness of different XAI methods across various settings.  

 

Appropriate data is essential because making inaccurate predictions hampers the trustworthiness of XAI. 

Additionally, XAI systems can create a point of weakness since attackers may manipulate explanations to 

evade detection. Technical skill diversity within cybersecurity teams can hinder their effectiveness in 

understanding and responding to XAI solutions. The limitation of XAI regulations not being universally 

consistent makes compliance more challenging. Furthermore, the speed at which cyber threats evolve 

means that XAI models must constantly be updated, thereby increasing overall operational complexity. 

Developing and enhancing XAI for secure operations should be a priority for future research. 

 

 
Table 6. Research Gaps and Future Directions Identified 

 

 

The systematic extraction and synthesis process revealed that 68% of studies mentioned the fundamental 

tension between model accuracy and interpretability. This comprehensive data extraction framework 

enabled the identification of research trends, methodological approaches, and empirical findings across the 

XAI in the cybersecurity domain, providing a solid foundation for the subsequent analysis and discussion 

sections. 

 

Conclusion 
 

This review provides a logical progression from rule-based systems to deep learning, while also discussing 

challenges such as adversarial attacks (Kumar and Kumar, 2021) and data bias (Mehrabi et al., 2021). A 

notable contribution is that it makes XAI both a technical and regulatory necessity, taking into account the 

GDPR’s “right to explanation” (Weller, 2019). The study advocates for interdisciplinary research, merging 

cybersecurity, human-computer interaction, and ethics to refine XAI frameworks. It identifies emerging 

fields, such as federated XAI (Chen et al., 2022), as potential solutions for retaining user privacy while 

ensuring explainability.  Finally, this review asserts that XAI is more than an added feature in building 

intelligent systems but a revolution in gaining the trust of autonomous systems. 

 

 

Research Gap 
Studies Identifying 

the Gap 
Percentage Proposed Solutions 

Standardized evaluation metrics 127 75.1% Common benchmarking frameworks 

Real-time XAI performance 132 78.1% Edge computing solutions, model 

optimization 

Adversarial robustness of 

explanations 

98 58.0% Robust explanation methods, 

adversarial training 

User-centered design 105 62.1% Participatory design, usability studies 

Cross-domain applicability 89 52.7% Transfer learning, domain adaptation 

Federated XAI implementation 56 33.1% Privacy-preserving explanation 

techniques 
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