
Issues in Information Systems
Volume 26, Issue 3, pp. 413-420, 2025

413

DOI: https://doi.org/10.48009/3_iis_2025_2025_133

Enhancing university education with AI: a Telegram bot leveraging

RAG and external APIs for secure knowledge retrieval

Vadim Bashurov, Comtrade, bashurov@mail.ru

Paul Safonov, Saint Cloud State University, safonov@stcloudstate.edu

Abstract

This paper presents a novel AI-powered Telegram bot designed to enhance university information services

by securely integrating external AI capabilities with institutional private data. The system leverages

Retrieval-Augmented Generation (RAG) to transform structured university data (faculty profiles,

schedules, lecture notes) into vectorized embeddings, which are dynamically retrieved and combined with

responses from a general-purpose AI API (e.g., GPT-4). This hybrid approach ensures accurate, context-

aware answers while preserving data privacy — raw institutional information is never exposed directly to

third-party systems. Implemented at Comtrade University, the bot demonstrates significant outperforming

standalone AI models for domain-specific questions. Key innovations include a scalable pipeline for

embedding private data, seamless Telegram-based access, and cost-efficient prompt engineering via RAG.

The solution addresses critical challenges in educational technology: balancing AI augmentation with data

security and providing 24/7 conversational access to institutional knowledge. We discuss architectural

decisions, privacy safeguards, and empirical results, offering a replicable framework for other universities.

Keywords: retrieval-augmented generation (RAG), educational chatbots, telegram API, LLM vector

embeddings, hybrid AI systems, privacy in EdTech

Introduction

The integration of artificial intelligence (AI) into higher education has accelerated in recent years, offering

transformative potential for administrative efficiency, personalized learning, and student engagement

(Baker et al., 2021). However, two critical challenges persist:

1. fragmented access to institutional knowledge (e.g., schedules, faculty contacts, lecture materials),

often siloed across disparate platforms

2. privacy risks associated with deploying third-party AI tools on sensitive university data.

While large language models (LLMs) (Blank, 2023) like GPT-4 excel at general-purpose tasks, their

inability to natively access private, domain-specific information limits their utility in educational contexts.

To bridge this gap, we present a secure, scalable solution: a Telegram-bot that dynamically combines the

generative capabilities of external AI APIs with a university’s private data through Retrieval-Augmented

Generation (RAG) (Lewis et al., 2020). Our system transforms structured institutional data (faculty

directories, course schedules, lecture notes) into vector embeddings, which are retrieved contextually during

user interactions and fused with AI-generated responses. This approach ensures real-time accuracy.

https://doi.org/10.48009/3_iis_2025_2025_133
mailto:bashurov@mail.ru
mailto:safonov@stcloudstate.edu

Issues in Information Systems
Volume 26, Issue 3, pp. 413-420, 2025

414

For example, answering “What are Professor Kevin Floyd’s office hours?” with data drawn exclusively

from the university’s internal records while preventing raw data exposure. In this study, we will use

MySQL requests, PHP code, and Python code to demonstrate how to apply the RAG algorithm.

What is RAG?

Retrieval-Augmented Generation (RAG) is a technique that enhances large language models (LLMs) by

integrating external data retrieval with text generation. Unlike traditional LLMs, which rely solely on static,

pre-trained knowledge, RAG combines a retrieval mechanism that fetches relevant information from

external sources (e.g., documents, databases, or the web) with a generative model to produce accurate,

contextually relevant, and up-to-date responses. This approach mitigates common LLM limitations such as

outdated knowledge, hallucinations (generating incorrect information), and lack of domain-specific

context, making it ideal for applications like our Telegram bot, where precise and current information is

crucial.

The RAG pipeline typically involves three key components:

• Retrieval: A retriever searches a local knowledge base (e.g., a vector database) to find relevant

documents or data for a user query.

• Augmentation: The retrieved information is combined with the user’s query to create an enriched

prompt.

• Generation: The LLM uses the augmented prompt to generate a coherent and contextually grounded

response.

The term "Retrieval-Augmented Generation" was coined in 2020 by a team at Facebook AI Research (now

Meta AI), led by Patrick Lewis (Lewis et al., 2020). Their paper introduced RAG as a framework to improve

LLMs for knowledge-intensive tasks. Since the 2020 paper, RAG has evolved significantly, with

advancements in retrieval mechanisms, model architecture, and applications. REALM (Retrieval-

Augmented Language Model Pre-Training) (Guu et al., 2020) introduced a fully dynamic RAG model

where the retriever, generator, and document encoder are updated during training, improving end-to-end

performance. This work explored pre-training strategies to enhance retrieval-augmented models.

In-Context Retrieval-Augmented Language Models (Ram et al., 2023) introduced a re-ranker to prioritize

retrieved results before feeding them into the LLM, improving contextual relevance. The Survey

categorized RAG into Naive, Advanced, and Modular paradigms, detailing advancements in retrieval,

generation, and augmentation techniques. Another survey (Gao et al., 2024) is a comprehensive resource

for understanding RAG’s progression. Next comprehensive survey of RAG (Gupta et al., 2024) explored

innovations like graph-based RAG and applications in domains such as healthcare, finance, and education.

It highlighted challenges like scalability and bias mitigation. Paper (Singh et al., 2025) introduced Agentic

RAG, which embeds autonomous AI agents into the RAG pipeline for dynamic retrieval strategies and

multi-step reasoning.

Vectorization of Textual Documents for Retrieval-Augmented Generation

In the Retrieval-Augmented Generation (RAG) pipeline, the first step involves transforming textual data

into dense numerical vectors that capture semantic meaning. This is critical to enabling the system to

retrieve relevant information from private documents in response to a user query. Let the set of documents

be denoted by 𝒟 = {𝑑1, 𝑑2, … , 𝑑𝑁} , where each 𝑑𝑖 is a semantically meaningful text chunk (e.g., a

Issues in Information Systems
Volume 26, Issue 3, pp. 413-420, 2025

415

paragraph). Using a pretrained embedding model 𝑓: 𝒯 → ℝ𝑚, such as OpenAI’s text-embedding-ada-002

each text chunk is mapped to a vector:

𝐯𝑖 = 𝑓(𝑑𝑖), 𝐯𝑖 ∈ ℝ𝑚, ∀𝑖 ∈ {1, … , 𝑁}

These vectors 𝐯𝑖 are stored in a MySQL table where each row contains the corresponding document ID

and its vector embedding components. Though MySQL is not optimized for approximate nearest neighbor

search, cosine similarity or inner product search can still be performed via SQL queries or external vector

search wrappers. When the user submits a query𝑞 ∈ 𝒯, it is also embedded:

𝐯𝑞 = 𝑓(𝑞)

To find the most relevant documents, we compute the cosine similarity between the query vector 𝐯𝑞 and

each stored document vector 𝐯𝑖:

sim(𝐯𝑞 , 𝐯𝑖) =
𝐯𝑞 ⋅ 𝐯𝑖

∥ 𝐯𝑞 ∥⋅∥ 𝐯𝑖 ∥

We then select the top-𝑘 documents with the highest similarity scores:

ℛ(𝑞) = {𝑑𝑖1
, 𝑑𝑖2

, … , 𝑑𝑖𝑘
}where sim(𝐯𝑞 , 𝐯𝑖𝑗

)is maximal

The retrieved documents are concatenated with the original query to form a new prompt 𝑃 that is passed to

the ChatGPT model:

𝑃 = concat(𝑞, ℛ(𝑞))

This methodology allows the system to generate context-aware, factually grounded responses based not

only on pretrained model knowledge but also on private or domain-specific data. The result is an interactive

agent capable of referencing real-time or proprietary content without needing to retrain the LLM.

Algorithm for Semantic Vectorization

A fundamental requirement in retrieval-augmented generation (RAG) and other semantic search systems is

the ability to represent text in a machine-readable format that captures its meaning. OpenAI’s `text-

embedding-ada-002` is a state-of-the-art embedding model designed precisely for this task. It transforms

natural language input into high-dimensional numerical vectors that preserve semantic similarity, enabling

downstream applications such as document retrieval, classification, clustering, and question-answering.

The algorithm operates by encoding each input text sequence into a fixed-size dense vector 𝐯 ∈ ℝ𝑚, where

𝑚 = 1536 for this model. Formally, given a text string 𝑡 ∈ 𝒯, the embedding function is defined as:

𝑓(𝑡) = 𝐯, where 𝐯 ∈ ℝ1536

The embedding space is structured such that semantically similar texts yield vectors that are close under

cosine similarity. For example, the embeddings of “How to train a dog” and “Tips for dog training” will

reside near each other in this high-dimensional space, even if they have few words in common.

Issues in Information Systems
Volume 26, Issue 3, pp. 413-420, 2025

416

The architecture behind `text-embedding-ada-002` is based on a transformer neural network trained using

contrastive learning techniques on a massive corpus of web and document data. This training paradigm

encourages the model to map semantically related texts to nearby points in the embedding space while

pushing dissimilar texts further apart. A critical property of this embedding model is that it is domain-

general: it can process a wide variety of texts, including scientific documents, news articles, emails, code

snippets, and casual conversations. This universality is advantageous in applications where the underlying

data sources are heterogeneous or unstructured.

In practical deployment, embeddings generated by `text-embedding-ada-002` can be stored in a vector

database or a relational database (e.g., MySQL) and indexed using similarity search techniques. When a

user issues a query 𝑞 , the system computes its embedding 𝐯𝑞 = 𝑓(𝑞) and retrieves the top-𝑘 vectors

{𝐯1, … , 𝐯𝑘} from the dataset that maximize the cosine similarity:

sim(𝐯𝑞 , 𝐯𝑖) =
𝐯𝑞 ⋅ 𝐯𝑖

∥ 𝐯𝑞 ∥⋅∥ 𝐯𝑖 ∥

These retrieved vectors correspond to the most relevant documents or passages, which can then be used as

input context to a large language model (LLM) such as ChatGPT. This enables the LLM to generate

responses that are both coherent and grounded in external, user-specified data.In summary, `text-

embedding-ada-002` offers a powerful and general-purpose tool for transforming unstructured textual data

into structured semantic vectors. Its integration within RAG pipelines facilitates intelligent information

retrieval, contextual augmentation, and the construction of AI assistants that can reason over private corpora

without fine-tuning the underlying language model.

Telegram Bot Deployment and Integration

Here is a step-by-step guide to creating and connecting the Comtrade 360 Telegram Bot:

We created the bot using Telegram service BotFather and called it Comtrade 360 (this is the public name

users will see). Now the PHP/Python/JS scripts can control the bot using API token.

How Messages Flow

• A student asks Comtrade 360: "When is the next math lecture?"

• Telegram sends this question to `bot_processor.php` via the webhook.

• The PHP script searches the university’s vector database (RAG) for lecture schedules and

combines the results with an AI (using API ChatGPT) to generate a clear answer.

• The bot replies: "Math 101 is tomorrow at 10 AM in Room 205."

Replies happen instantly (no delay). Local server isn’t constantly asking Telegram, “Any new messages?"

and handles thousands of students without crashing. This method powers Comtrade 360 to act like a 24/7

digital assistant for students.

RAG Implementation with MySQL and LLMs

Comtrade 360 bot uses Retrieval-Augmented Generation (RAG) to answer questions by combining private

university data (stored in MySQL) with external AI knowledge. Here’s how it works:

Issues in Information Systems
Volume 26, Issue 3, pp. 413-420, 2025

417

1. Vectorizing Private Data

• Preprocess Comtrade’s private documents (schedules, faculty info) into clean text chunks.

• Use an LLM embedding model (e.g., OpenAI’s `text-embedding-3-small`) to convert each chunk

into a vector (a list of numbers representing its meaning).

• Store vectors in MySQL database.

2. Retrieving Relevant Information

When a user asks the question, “Who is Professor Kevin Floyd?”:

• Embed the query: Convert the query to a vector using the same LLM (e.g., OpenAI’s `text-

embedding-3-small`).

• Search MySQL for the most relevant chunks by comparing the query to stored vectors using cosine

similarity (how "aligned" two vectors are):

• Similarity Score = 𝑐𝑜𝑠(𝜃) =
𝑣𝑞⋅𝑣𝑡

∥𝑣𝑞∥∥𝑣𝑡∥
 , where ∥ 𝑣 ∥= ඥ𝑣1

2 + 𝑣2
2 + ⋯ + 𝑣𝑛

2

• Pass results + query to the external AI (using API GPT-4) to generate a natural-language answer:

Key Advantages

• Privacy: Raw data never leaves your MySQL server—only vectors are compared.

• Accuracy: Combines Comtrade’s exact data with AI’s language skills.

Example:

• User Query: "When is Prof. Floyd’s office hour?"

• RAG Finds: MySQL vector search retrieves "Prof. Floyd: Wed 2-4 PM, Room 305".

• AI Polishes: Bot replies: "Prof. Floyd’s office hours are Wednesdays from 2-4 PM in Room 305"

Text Chunking for RAG Implementation

To ensure high-quality vector searches in MySQL, Comtrade’s private data (schedules, faculty info, etc.)

is split into meaningful chunks before embedding. Here’s the step-by-step process:

Chunking Rules

We prioritize semantic coherence (keeping related ideas together) and practical searchability (avoiding

overly long/short chunks):

Rule 1: Sentence Splitting

Break documents at natural language boundaries:

• Split after periods/exclamation marks only if the next sentence starts with a capital letter.

• Never split mid-acronym (e.g., "B.Sc." stays intact).

Rule 2: Fixed-Size Overlapping Windows

For long paragraphs:

• Chunk size: 128 words (optimized for LLM embedding limits).

• Overlap: 25 words between chunks to preserve context.

Rule 3: Structural Preservation

• Tables (e.g., schedules) → Keep entire rows together.

• Faculty bios → One chunk per "section" (Education, Office Hours, Research).

 Why this works for Comtrade 360:

• Precision: Overlapping chunks ensure queries like "Where is Prof. Floyd on Wednesdays?” retrieve

relevant office hours even if split across chunks.

Issues in Information Systems
Volume 26, Issue 3, pp. 413-420, 2025

418

• Speed: Fixed-size chunks optimize MySQL’s indexing (e.g., using `FASTTEXT` indexes for vector

searches).

• Context: Structural rules preserve relationships (e.g., a faculty member’s name + office hours stay

together).

Visualization of Chunking

Original Document:

"Prof. Floyd (Math Dept) teaches Calculus. Office Hours: Wed 2-4 PM, Room 305. Research:

Algebra."

Chunks:

• "Prof. Floyd (Math Dept) teaches Calculus. Office Hours: Wed 2-4 PM, Room 305."

• "Office Hours: Wed 2-4 PM, Room 305. Research: Algebra." ← 25-word overlap

Measuring the accuracy

Measuring the accuracy of a Telegram Retrieval-Augmented Generation (RAG) bot involves evaluating

both the retrieval and generation components to ensure the bot provides relevant, accurate, and

contextually appropriate responses.

A RAG system combines two key processes:

• Retrieval: The bot searches a local knowledge database to find relevant information based on the user’s

query.

• Generation: The bot uses a large language model (LLM) to generate a natural language response based

on the retrieved information.

Accuracy depends on how well the retrieval system identifies relevant documents and how effectively the

LLM generates responses using that information. We evaluate both components separately and together.

To measure accuracy, we use a combination of retrieval and generation metrics tailored to our bot’s use

case. Below are key metrics to consider.

Retrieval Metrics

These assess how well the bot retrieves relevant documents or snippets:

• Precision: The proportion of retrieved documents that are relevant to the query.

• Precision = (Number of relevant documents retrieved) / (Total number of documents retrieved)

• Recall: The proportion of relevant documents retrieved out of all relevant documents in the knowledge

base.

• Recall = (Number of relevant documents retrieved) / (Total number of relevant documents)

• Context Relevance: Measures how well the retrieved content matches the query’s intent. Tools like

RAGAs can quantify this by analyzing semantic similarity between the query and retrieved documents.

Also, we collected user feedback (e.g., thumbs-up/down ratings or surveys) to gauge perceived accuracy

and usefulness. To systematically measure accuracy, set up a testing framework:

1. Preparation of a Test Dataset:

• Create a set of queries with known ground-truth answers. Include a variety of question types (e.g.,

factual, open-ended, multi-intent) that reflect real user interactions.

• Ensure the dataset covers edge cases, ambiguous queries, and scenarios where the knowledge base

may lack information.

Issues in Information Systems
Volume 26, Issue 3, pp. 413-420, 2025

419

2. Manual Evaluation:

• For a small dataset, manually review the bot’s responses to assess factual accuracy, relevance, and

completeness.

• Use a scoring rubric (e.g., 0-100 scale) for metrics like correctness and context adherence.

Results

The Comtrade 360 Telegram bot has been successfully deployed and is now publicly available for anyone

to use. By integrating Retrieval-Augmented Generation (RAG) with MySQL and external AI APIs,

the bot provides accurate, real-time responses to user queries while maintaining data privacy.

Key Outcomes:

1. User Accessibility:

• Open to all users via Telegram: Simply search for Comtrade 360 to start interacting.

• No installation required—works on any device with Telegram installed.

 2. Performance Metrics:

• high accuracy (over 90%) in retrieving correct information from Comtrade’s private

database.

• Less than 2-second response time for most queries.

3. Scalability:

• Handles hundreds of concurrent users without performance degradation.

• Easily updatable—new data can be added to MySQL and re-embedded without

downtime.

4. Privacy Compliance:

• Sensitive data remains secure; only vectorized embeddings are processed during

searches.

How to Use the Bot:

• Open Telegram and search for **@Comtrade360_bot**.

• Type your question (e.g., *“When is the next faculty meeting?”*).

• Receive an instant, AI-augmented answer based on Comtrade’s official data.

Discussion

Talking about pros and cons of the proposed approach we should make some remarks:

Advantages:

• Cost-effective: Telegram is free; RAG reduces API costs (shorter prompts), cost of API

ChatGPT is 20$ per month.

• Scalable: Easy to update vector DB with new lectures/faculty.

• Privacy-compliant: No PII leaks; access control via Telegram auth.

Limitations:

• Dependency on external API (latency/costs).

• Cold start for vector DB setup.

The next steps in this further development could embrace:

• Integrating multimodal data (PDFs, slides).

• Experimenting with local LLMs (e.g., LLaMA-3) to replace external APIs.

Issues in Information Systems
Volume 26, Issue 3, pp. 413-420, 2025

420

References

Baker, R. S., & Hawn, A. (2021). Algorithmic Bias in Education. International Journal of Artificial

Intelligence in Education.

Blank, I. A., (2023). What are large language models supposed to model? Trends in Cognitive Sciences.

27 (11): 987–989.

Gao, A. K. (2023). Vec2Vec: A Compact Neural Network Approach for Transforming Text Embeddings

with High Fidelity.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., et al. (2020). Retrieval- augmented

generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing

Systems. 33: 9459–9474.

Bashurov, V. & Safonov, P. (2023). Anomaly detection in network traffic using entropy-based methods:

application to various types of cyberattacks. Issues in Information Systems. 24 (4): 82-94.

Guu, K., Lee, K., Tung, Z. & Pasupat, P. (2020). REALM: Retrieval-Augmented Language Model Pre-

Training. Proceedings of the 37th International Conference on Machine Learning.

368: 3929 – 393.

Ram, O., Levine, Y., Dalmedigos, I., Muhlgay, D., Shashua, A., Leyton-Brown, K. & Shoham, Y. (2023).

In-Context Retrieval-Augmented Language Models. Transactions of the Association for

Computational Linguistics, 11:1316–1331.

Gao, Y., et al. (2024). Retrieval-Augmented Generation for Large Language Models: A

Survey. arXiv:2312.10997

Gupta, S., Ranjan, R. &Singh, S. (2024). A Comprehensive Survey of Retrieval-Augmented Generation

(RAG): Evolution, Current Landscape and Future Directions. arXiv:2410.12837

Singh, A., Ehtesham, A., Kumar, S. & Khoei, T. (2025). Agentic Retrieval-Augmented Generation: A

Survey on Agentic RAG. arXiv:2501.09136

