
Issues in Information Systems
Volume 26, Issue 4, pp. 39-44, 2025

39

DOI: https://doi.org/10.48009/4_iis_2025_104

Regularization of document-term matrices using singular value

decomposition

Ben Kim, Seattle University, bkim@seattleu.edu

Abstract

This paper seeks to identify appropriate regularization methods for document-term matrices.

Regularization is essential in machine learning for reducing overfitting and improving model

generalization. The evaluation uses a document-term matrix generated from a vectorized wine review

dataset, with cross-validation performed using random forest and gradient boosting regression algorithms.

Using these evaluation scores, we identify the proper regularization methods for document-term matrices.

All implementations are written in Python, and the source code is provided to ensure reproducibility.

While L1 (lasso) and L2 (ridge or Tikhonov) regularization are widely used, this paper investigates

Singular Value Decomposition (SVD) as an alternative approach, particularly suited for high-dimensional

and noisy datasets. Three SVD-based regularization techniques are explored for document-term matrices

in the context of natural language processing: low-rank approximation, feature orthogonalization, and

principal component analysis. Each method is implemented and assessed based on execution time,

memory consumption, and predictive performance measured by R² scores.

Keywords: egularization, document term matrix, singular value decomposition, low-rank approximation,

feature orthogonalization, principal component analysis

Introduction

The paper seeks to identify appropriate regularization methods for document-term matrices. Regularization

is a fundamental concept in machine learning, helping models avoid overfitting by discouraging

unnecessary complexity. Traditional approaches, such as L1 (lasso) and L2 (ridge) penalties, directly

constrain model parameters through modifications to the loss function. However, for high-dimensional,

sparse, or noisy datasets, regularization at the data level can also be effective. In text mining, for instance,

document-term matrices (DTMs) often exhibit high dimensionality and sparsity, making them suitable

candidates for matrix factorization methods that reveal latent structure and reduce noise. In this paper, we

seek to identify appropriate regularization methods for document-term matrices.

Singular Value Decomposition (SVD) has long been used in applications such as Latent Semantic Analysis

to uncover hidden relationships among terms and documents. Building on this, our study examines how

SVD-based techniques can serve as a practical form of data regularization in natural language processing

tasks. We focus on three approaches that leverage SVD to address redundancy and improve computational

efficiency in DTMs. Using a real-world wine review dataset, we evaluate the impact of these methods on

model performance and resource usage, highlighting practical considerations for their implementation in

Python.

https://doi.org/10.48009/4_iis_2025_104
mailto:bkim@seattleu.edu

Issues in Information Systems
Volume 26, Issue 4, pp. 39-44, 2025

40

Literature Review

Deerwester et al. (1990) used SVD to enhance the detection of relevant documents based on query terms.

They decomposed a large document-term matrix into approximately 100 orthogonal factors, allowing the

original matrix to be approximated through their linear combination. Berry et al. (1995) used SVD to reveal

the implicit higher-order structure within document-term matrices. By representing terms and documents

using the 200–300 largest singular vectors, they matched these representations to user queries. This retrieval

approach, known as Latent Semantic Indexing (LSI), captures important associative relationships between

terms and documents that are not apparent when analyzing individual documents alone.

Huang, Shen, and Buja (2013) propose a sparse-smooth regularized SVD that combines sparsity and

smoothness constraints to improve interpretability and denoising in high-dimensional data. Their method

outperforms standard SVD by selecting relevant features and preserving structural continuity, which is

especially useful in applications like image and signal processing. Kawano (2021) discusses sparse

regularization with PCA and regression using SVD. The approach aims to obtain principal component

loadings that incorporate information from both explanatory variables and a response variable, enhancing

the interpretability and predictive performance of the model.

Kumar and Schneider (2017) examine multiple algorithms for low-rank approximation, including Singular

Value Decomposition (SVD) and QR decomposition, highlighting the computational challenges associated

with high-dimensional data. Hamlomo et al. (2025) present a systematic review of low-rank and local low-

rank matrix approximation methods for big data medical imaging. Their work highlights how these

techniques address high dimensionality and noise in applications such as MRI reconstruction and image

denoising. The review contrasts global low-rank models with newer local approaches that better capture

structural details by exploiting spatial redundancies. Overall, the authors emphasize the growing importance

of low-rank methods for developing efficient and accurate medical imaging algorithms.

SVD (Singular Value Decomposition)

Singular Value Decomposition is a matrix factorization technique that decomposes any matrix, square or

rectangular, into three component matrices. Unlike eigendecomposition, which is limited to square

matrices, SVD can be applied to matrices of any shape. The two techniques for regularization in this paper,

low-rank approximation and feature orthogonalization, are based on truncated SVD. Given a matrix A,

SVD factorizes it as the product of three matrices as in the following:

A=U Σ V-1

where V-1 is the inverse of V. U and V are orthonormal matrices.

Since V is an orthonormal matrix, V-1 = VT where VT is the transpose of V.

Thus A = U Σ VT

where

U ∈ Rm×m: orthonormal matrix of left singular vectors

Σ ∈ Rm×n: diagonal matrix of singular values

V ∈ R n×n: orthonormal matrix of right singular vectors

The singular values in ∑ are arranged in descending order. Each singular value represents the significance

in each corresponding column or row of the original matrix. Left singular vectors (columns of U) span the

column space of A. Right singular vectors (columns of V) span the row space A.

Issues in Information Systems
Volume 26, Issue 4, pp. 39-44, 2025

41

Dataset description for testing

A dataset was obtained from Kaggle (https://www.kaggle.com/datasets/zynicide/wine-reviews) titled

"winemag-data-130k-v2.csv," containing 129,971 rows and 14 columns, with a file size of 52.91

megabytes. The dataset includes columns such as 'country', 'description', 'designation', 'points', 'price',

'province', 'region1', 'region2', 'taster_name', 'taster_twitter_handle', 'title', 'variety', and 'winery'. The

'points' column represents the wine scores assigned by Wine Enthusiast magazine on a scale of 1 to 100

(Kaggle, 2022).

The 'price' and 'points' columns contain numerical data, while 'description' consists of text data. The

remaining columns are nominal or categorical. The wines originate from 43 countries, including the USA,

France, Italy, and Spain. There are 571 grape varieties, such as Pinot Noir, Chardonnay, and Cabernet

Sauvignon. Examples of wine descriptions are presented in Table 1.

Table 1. Examples of Wine Descriptions

Description

"Aromas include tropical fruit, broom, brimstone and dried herb. The palate isn't overly expressive,

offering unripened apple, citrus and dried sage alongside brisk acidity."

"This is ripe and fruity, a wine that is smooth while still structured. Firm tannins are filled out with juicy

red berry fruits and freshened with acidity. It's already drinkable, although it will certainly be better from 2016."

"Tart and snappy, the flavors of lime flesh and rind dominate. Some green pineapple pokes through, with crisp

acidity underscoring the flavors. The wine was all stainless-steel fermented."

"Pineapple rind, lemon pith and orange blossom start off the aromas. The palate is a bit more

opulent, with notes of honey-drizzled guava and mango giving way to a slightly astringent, semidry finish."

The 'points' column represents the ratings assigned by Wine Enthusiast magazine on a scale of 1 to 100,

with scores ranging from 80 to 100. The average and median scores are 88.44 and 88, respectively. The

'price' column ranges from $4 to $3,300, with a mean of $35.36 and a median of $35. The dataset includes

12 wine tasters, including Roger Voss, Michael Schachner, and others. Further details about the dataset are

available in Kim (2022).

Reduction of sample size

The original dataset comprises 129,971 samples. Due to computational constraints, we created a more

manageable subset by applying filtering criteria, such as selecting wines from countries with at least 1,000

entries and focusing on popular wine varieties. This reduced the dataset to 74,999 samples. To further

address computational limitations, we randomly selected 1,000 samples to generate a document-term matrix

(DTM) using the TF-IDF (Term Frequency-Inverse Document Frequency) vectorizer for wine descriptions,

as shown in Table 1. The resulting DTM has a shape of 1,000 × 3,856, representing 3,856 unique terms.

Subsequently, we applied three data regularization techniques and evaluated two machine learning

algorithms—Random Forest and Gradient Boosting. The resulting R² scores are presented later in the

performance and discussion section.

Dataset Regularization

Low-rank approximation (LRA)

LRA is based on the truncated SVD. This technique approximates a high-dimensional matrix by a matrix

of lower rank k, where k is lower than the original matrix's rank. By controlling the number of singular

values (via a parameter k), we ensure that only the dataset's most important dimensions (or features) are

https://www.kaggle.com/datasets/zynicide/wine-reviews

Issues in Information Systems
Volume 26, Issue 4, pp. 39-44, 2025

42

retained. This technique can help reduce dimensionality, eliminate noise, and capture the most significant

patterns in the data. It may enhance model performance and generalization.

We can compress the dataset by multiplying the top k left singular vectors (Uk) by a diagonal matrix

containing the top k singular values (Σ k) as in the following:

Ak = Uk Σ k Vk
t where Ak ∈ Rm×n

The reconstructed matrix Ak retains the same shape as the original matrix but with a reduced rank k. This

compression technique is useful for applications such as image processing, denoising, and imputing missing

values. We can reduce the dimensionality of the matrix A by multiplying the first k left singular vectors by

the diagonal matrix with the top k singular values, as in the following:

Ar=UkΣk where Ar ∈ Rm×k

This process is equivalent to feature orthogonalization using SVD, which will be explained in the next

section. LRA was implemented on our dataset using sklearn.decomposition.TruncatedSVD, as shown

below:

from sklearn.decomposition import TruncatedSVD

from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.model_selection import cross_val_score

k = 100 # Number of singular values

svd = TruncatedSVD(n_components=k, random_state=1234)

X_reduced = svd.fit_transform(X)

print(f'Memory size of X_ reduced is {X_ reduced.nbytes/2**20: .2f} megabytes.')

rfmr = RandomForestRegressor(random_state = 5678)

rfmr_mean_score = np.mean(cross_val_score(rfmr,X_ reduced,y,cv=5))

gbmr = GradientBoostingRegressor(random_state = 5678)

gbmr_mean_score = np.mean(cross_val_score(gbmr,X_ reduced,y,cv=5))

Feature orthogonalization

This technique converts a set of features into orthogonal ones, effectively eliminating multicollinearity and

redundancy in large datasets. Unlike PCA, which transforms the data into linear combinations of principal

components, feature orthogonalization preserves the original feature space, keeping each feature distinct

and interpretable. Additionally, data centering is not required for feature orthogonalization. Full

orthogonalization does not truncate any features. However, in this paper, we remove the less significant

features (those associated with low singular values) to improve computational efficiency. Using SVD,

orthogonalized features can be computed by multiplying the first k left singular vectors by the diagonal

matrix with the top k singular values, as in the following:

Ao=UkΣk where Ao ∈ Rm×k

This can implement this mathematical equation in two ways: first, by manually decomposing the matrix

using SVD, and second, by utilizing the TruncatedSVD function from sklearn.decomposition, as

demonstrated below.

First way

U, S, VT = np.linalg.svd(X, full_matrices=False)

Issues in Information Systems
Volume 26, Issue 4, pp. 39-44, 2025

43

Construct orthogonalized features

X_ortho = U @ np.diag(S)[:,:100]

print(f'Memory size of X_ortho is {X_ortho.nbytes/2**20:.2f} megabytes.')

Alternative way

from sklearn.decomposition import TruncatedSVD

k = 100

svd = TruncatedSVD(n_components=k)

A_reduced = svd.fit_transform(X) # Shape: (500, 100)

PCA (Principal Component Analysis)

As noted earlier, this paper examines regularization methods in the context of document-term matrices

(DTMs). PCA requires data standardization, but since DTMs are typically sparse—composed largely of

zeros—standardization transforms many of these zeros into non-zero values. This increases memory usage

and computational complexity while reducing interpretability. In a DTM, zeros signify the absence of

specific terms in a document; altering them distorts the semantic structure and compromises the integrity

of the data.

Another limitation of PCA is that its principal components are generated as linear combinations of the

original features, making the transformed components unintuitive and difficult to interpret. In contrast,

feature orthogonalization preserves the original meanings of the features, allowing the transformed data to

be directly understood. While PCA is widely used for dimensionality reduction and regularization, we do

not believe that PCA is an appropriate regularization technique for document-term matrices.

Performances and Discussion

As discussed in the previous section, UkΣk represents the dataset where each orthogonalized feature (a

column of Uk) is scaled by its corresponding singular value in Σk. This effectively reweights the features

based on their importance, capturing the structure of the original dataset in a reduced-dimensional space.

This dataset is a common basis for both low-rank approximation and feature orthogonalization when SVD

is used for both techniques.

Table 2. Performances for each dataset

Predictor Features

 Points ~ Description

Size of dataset in

megabytes

Algorithms R-Squared Time in

seconds

Original dataset with 3744

features
29.42

Gradient Boosting 0.30 7.35

Random Forest 0.30 49.42

UkΣk for 100 features using

feature orthogonalization
0.76

Gradient Boosting 0.29 14.81

Random Forest 0.25 25.57

To assess the contribution of the wine description alone, we executed the machine learning models using

only the vectorized text data(‘description’ in the dataset), excluding the other 12 features provided in the

dataset (Kaggle, 2022). The number of features was reduced from 3,856 to 100, as shown in Table 2 — a

97% reduction. Consequently, the dataset size decreased from 29.42 megabytes to 0.76 megabytes. Despite

the reduction, the R² scores declined only slightly, from 0.30 to 0.29 for gradient boosting and from 0.30 to

0.25 for random forest. The execution times decreased significantly, from 49.42 to 25.57 seconds for

random forest.

Issues in Information Systems
Volume 26, Issue 4, pp. 39-44, 2025

44

Conclusion

Document-term matrices typically contain an extensive number of features in a sparse matrix, making the

application of machine learning algorithms computationally intensive. This complexity can render

execution infeasible in environments with limited computing resources. In this paper, we explore the use

of feature orthogonalization to reduce the number of features while maintaining model performance.

However, given the variability in the structure and content of document-term matrices, the effectiveness of

this technique may not be universally applicable.

References

Berry, M. W., Dumais, S. T., & O’Brien, G. W. (1995). Using linear algebra for intelligent information

retrieval. SIAM review, 37(4), 573-595.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by

latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391–

407.

Hamlomo, S., Atemkeng, M., Brima, Y., Nunhokee, C., & Baxter, J. (2025). A systematic review of low-

rank and local low-rank matrix approximation in big data medical imaging. Neural Computing

and Applications, 1-56.

Hong, Z., & Lian, H. (2013). Sparse-smooth regularized singular value decomposition. Journal of

Multivariate Analysis, 117, 163-174.

Huang, J. Z., Shen, H., & Buja, A. (2013). Sparse-smooth regularized singular value decomposition.

Journal of Multivariate Analysis, 122, 1–17. https://doi.org/10.1016/j.jmva.2013.06.007

Kaggle. (2022, May 21). Wine Reviews. https://www.kaggle.com/datasets/zynicide/wine-reviews

Kawano, S. (2021). Sparse principal component regression via singular value decomposition approach.

Advances in Data Analysis and Classification, 15(4), 795–823. https://doi.org/10.1007/s11634-

020-00435-2

Kim, B. (2022). Prediction of wine ratings using natural language processing. Issues in Information

Systems, 23(1).

Kumar, N. K., & Schneider, J. (2017). Literature survey on low rank approximation of matrices. Linear

and Multilinear Algebra, 65(11), 2212-2244.

https://doi.org/10.1016/j.jmva.2013.06.007
https://www.kaggle.com/datasets/zynicide/wine-reviews
https://doi.org/10.1007/s11634-020-00435-2
https://doi.org/10.1007/s11634-020-00435-2

