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Abstract 
 

Data poisoning attacks represent a critical threat to machine learning (ML) and artificial intelligence (AI) 
systems, with consequences across any sector employing an AI solution. As AI grows and is adopted into our 
personal lives and the industries we work for, the threat of manipulation may be unknown to those who adopt 
it and undervalued by those who may profit from it.  This paper attempts, through a meta-analysis, to 
synthesize findings from select studies published between 2018 and 2025, evaluating the technical, ethical, 
and sector-specific impacts of data poisoning. Key findings reveal that even minimal adversarial disturbances 
(as low as 0.001% of training data) can degrade model accuracy by up to 30%, distort decision boundaries in 
safety-critical systems (e.g., autonomous vehicles and healthcare diagnostics), and enable targeted attacks like 
backdoor triggers in generative AI. Sector-specific analyses demonstrate financial losses in algorithmic 
trading, misdiagnoses in medical imaging, and vulnerabilities in large language models (LLMs) trained on 
poisoned datasets like The Pile. Mitigation strategies, including adversarial training and knowledge graph-
based verification, show partial efficacy but fail to address scalability challenges. This study underscores the 
urgent need for robust, multi-layered defenses and interdisciplinary collaboration to safeguard AI ecosystems. 

 
Keywords: AI, Machine learning, Large language models, Data poisoning, Adversarial training data, 
Label flipping 
 

Introduction 
 

Data poisoning is the act of intentionally sending false or misleading data inputs, which can influence the 
model’s behavior, typically with negative consequences (Korada, 2024). There are six different types of 
data poisoning attacks: targeted attacks, non-targeted attacks, label poisoning/backdoor poisoning, training 
data poisoning, model inversion attacks, and stealth attacks. 
 
Targeted attacks look to exploit specific hardware or software within a system, leading to the model 
misinterpreting the signals it is receiving. Whereas a targeted attack focuses on a certain misconfiguration, 
a non-targeted attack targets the system as a whole. For example, Researchers showed the insertion of 
malware into AI systems can manipulate outcomes without necessarily breaking the system (Shen & Xia, 
2020).  In this instance, a Trojan virus was installed into real Go which ultimately ‘manipulated’ the AI 
behavior (Shen & Xia, 2020).  As such, targeted attacks can allow for the customization of malware 
specifically designed to alter AI to effectively run without the user’s awareness. 
 
Label/backdoor poisoning targets the data that the model is trained on. The data on which the model is 
trained is poisoned, allowing for the exploitation of the model when it is asked to make inferences on 
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different data (Korada, 2024). This type of data poisoning likely would require a threat actor to have direct 
access to the LLM and the data it is trained on, either as an insider threat or through exploitation tactics. To 
add, the problem becomes even more challenging as we continue to leverage AI to generate code.  For 
example, the implementation of AI code generators allows for the direct manipulation of code generation 
software as most AI code generation is training on, “large amounts of data, often collected from un-sanitized 
online sources” (Cotroneo et al, 2024, p. 280).   As such, it becomes easy to manipulate the AI training by 
introducing large amounts of code into code repositories wherein vulnerabilities exist (Cotroneo et al, 2024) 
 
Training data poisoning is similar to label/backdoor poisoning; training data poisoning targets internal 
datasets, but targets the training examples. Usually, the manipulations are minor but can cause disruptions 
and affect predictions in the future.  In fact, Koh et al (2022) noted in their research, adding just 3% poisoned 
data can result in increases in test error from 3 to 24%.  The other poisoning methods target the system or 
datasets directly, causing disruptions or incorrect inferences; however, model inversion attacks try to extract 
the data through queries of the model, and the threat actor attempts to recreate the training samples the 
model was trained on. 
 
Stealth attacks involve the threat actor attempting to evade detection while still exploiting the system and 
potentially causing harm (Korada, 2024). A stealth attack can apply to any of the previous injections as 
long as that injection cannot be detected by systems. Furthermore, as noted earlier, the introduction of 
customized malware to alter AI behavior can occur in such a way as to be unnoticed by the user (Shen & 
Xia, 2020). 

The proliferation of AI systems in critical domains, from healthcare to finance, may heighten vulnerabilities 
to data poisoning, a form of adversarial attack where malicious actors manipulate training data to corrupt 
model behavior. Unlike traditional cyberattacks, data poisoning exploits the inherent trust in training data, 
making detection challenging and consequences severe. Alber et al. (2025) demonstrated that poisoning 
just 0.001% of medical training tokens in LLMs increased harmful outputs by 4.8%, while Huang et al. 
(2020) achieved 41% attack success rates in code-generating models with 3% poisoned data. 

It is clear AI manipulation can occur in any stage of the process which generates the usable AI model. To 
limit the analysis, this paper focuses on the systematic review of data poisoning consequences across three 
dimensions. From this vantage point, we attempt to show the implications across all AI-connected systems.  
We focused on the three dimensions: technical impacts, sector-specific risks, and mitigation limitations. 
  

Synthesis of Findings 
 
Technical Impacts 
The technical impacts of data poisoning attacks could be profound and complex. At their core, these attacks 
may degrade model accuracy, distort decision boundaries, and amplify vulnerabilities within affected 
systems. For example, even minimal poisoning, such as corrupting 0.001% of tokens in a medical dataset, 
can increase the incidence of harmful outputs by nearly 5%, making it difficult for human evaluators to 
distinguish between legitimate and poisoned content (Alber et al., 2025). In neural machine translation 
models used for code generation, poisoning as little as 3% of the training data can result in a 12–41% 
poisoning attack success rate, producing code with vulnerabilities that would otherwise not occur (Korada 
et al., 2024). In addition, “poisoned data does not have to look anomalous; if the poisoned points are 
carefully coordinated” (Koh et al, 2020, p. 4).  These technical disruptions may not be limited to a single 
model type or application as they could potentially propagate through updates and retraining, compounding 
over time and undermining the reliability of AI systems across domains (Alber et al., 2025; Korada et al., 
2024) 



Issues in Information Systems 
Volume 25, Issue 4, pp. 433-442, 2025  

 
 

435 

 
Cotroneo, Improta, Liguori, & Natella (2024) explore how neural machine translation (NMT) AI code 
generators can be poisoned to produce vulnerable code. Current LLMs utilize open-source data from code 
repositories including GitHub, HuggingFace, and StackOverflow. As the datasets are pulled from these 
sources, they could potentially contain poisoned data. There are few restraints or guidelines on sanitizing 
the data pulled from these repositories, and most are trusted without any checks. Cotroneo et al. wanted to 
test how secure AI code generators are. Three different NMT models were poisoned, and the results of the 
poisoned data were recorded.  According to Controneo et al., Seq2Seq, CodeBERT, and CodeT5+. NMT 
models are considered the best solution for AI-based code generation. The study's findings revealed that if 
3% of the data were poisoned, it would affect code generation. When increasing the amount of the poisoned 
data to 6%, all NMT models contained more vulnerable code. Pre-trained models can be targeted with 
poisoning attacks, and it will not affect the performance of the models. The attack's success depended on 
the amount of poisoned training data and the model architecture. 
 
Sector Specific Risks 
Sector-specific data poisoning risks, as demonstrated by case studies in healthcare, finance, autonomous 
systems, and generative AI, may be equally vulnerable. In healthcare, public datasets such as The Pile and 
PubMed may be susceptible to poisoning. Potential attackers could inject misinformation at scale for 
relatively little cost. This may directly impact clinical decision-making, as models trained on these datasets 
may produce unsafe recommendations that clinicians cannot reliably identify as erroneous (Alber et al., 
2025). In the financial sector, poisoning just 1% of training data in fraud detection or trading algorithms 
can lead to significant economic losses and increased false positives, undermining trust in automated 
systems (Korada et al., 2024). Autonomous systems, such as self-driving vehicles, could be equally 
vulnerable to misclassification of critical objects like road signs, which can result in catastrophic safety 
failures. Generative AI models may also be at risk, especially those relying on in-context learning.  Targeted 
poisoning could decrease accuracy by up to 30%, with open-source models being easily accessible and 
susceptible (Li et al., 2024). 
 
Medical large language models may be vulnerable to data-poisoning attacks that utilize the dataset known 
as The Pile, which is known for LLM development (Alber, et al., 2024). As with other LLM’s public data 
can be used to train different models. Within the medical realm, these public databases include Common 
Crawl, PubMed, and Project Gutenberg (Alber, et al., 2024). These platforms have a lack of oversight which 
could lead to potentially vulnerable datasets if poisoned. Researchers performed an in-depth analysis on 
The Pile, as it is the most widely used dataset for LLMs and has the least vulnerable medical content (Alber, 
et al., 2024). Of the data that was contained within The Pile, 27.4% of it was considered a vulnerable subset, 
with more than half of the vulnerable data originating from a public dataset known as the Common Crawl 
(Alber, et al., 2024). 
 
Alber et al. (2024) created a simulated data poisoning attack against The Pile. The researchers created 
150,000 misinformation articles using OpenAI GPT-3.5 turbo API and used these articles to corrupt 
information in The Pile. Two different types of parameters were tested: a broad targeting technique with a 
parameter of 1.3 billion across many different concepts, where 0.5% and 1% of the data were poisoned, and 
a smaller targeting technique across single concepts with a parameter of 1.3 billion and 4 billion, where 
0.001% of the dataset was poisoned (Alber, et al., 2024). 
 
Fifteen clinicians were tasked with determining the poisoned response and the baseline response; the 
reviewers were unable to determine the difference between the two results. The data in the 1.3 billion 
parameters had the p-values 0.0314 and 0.00484 between the 0.5% and 1.0% poisoned data, respectively 
(Alber, et al., 2024). When the concept-specific data was poisoned, at 0.001%, there was a 4.8% increase 
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in harmful content. The fake data that was created was created for less than $100 USD, it is predicted by 
the researchers that if this were formed at scale, it would remain under $1,000 USD to train a model with 
15 million injected tokens (Alber, et al., 2024). 
 
Data Poisoning for In-context Learning (ICL) analyzed how in-context learning could be poisoned, leading 
to less accurate responses using different datasets and seven different models (He, et al., 2024). The datasets 
used in this experiment were Stanford Sentiment Treebank (SST2), Corpus of Linguistic Acceptability 
(Cola), Emo dataset, AG’s new (AG) corpus, and Poem Sentiment (Poem). The models used to test against 
the datasets were Llama2-7B, Pythia, Falcon-7B, GPT-J-6B, and MPT-7B. API only models included GPT-
3.5 and GPT-4. 
 
ICL allows models to make predictions based on the prompt information, leading to more relevant 
predictions by the model. For this study to occur, the researchers assumed that a threat actor had access to 
either the full data set or a portion of the dataset (He, et al., 2024). The researchers created an ICL poisoning 
technique, ICLPoison, which leveraged hidden states within the ICL model. This attack vector was 
optimized and categorized into three main sections: synonym replacement, character replacement, and 
adversarial suffix (He, et al., 2024). Synonym replacement replaced a limited number of words with 
synonyms of that word to avoid detection while still maintaining the meaning of the statement sent to the 
LLM. The researchers also implemented a greedy system only allowing for replacement of a limited number 
of words to prevent detection. Using GloVe, the researchers find synonyms using word embedding (He, et 
al., 2024). Character replacement is similar to synonym replacement; however, this method replaces 
characters to assist in detection evasion (He, et al., 2024). Adversarial suffix adds tokens that are 
imperceptible to humans at the end of a prompt. As with synonym replacement, the adversarial suffix is 
limited to the extent to which it is allowed to replace (He, et al., 2024). 
 
The results of the He et al. (2024) study revealed that open-source models that were not poisoned were 
accurate over 88% of the time (He, et al., 2024). When performing an ICLPoison attack, the ICL accuracy 
dropped 10% and over 30% in some instances (He, et al., 2024). Depending on the model and dataset that 
was used, the effectiveness of the attack was influenced; of the different ICLPoison attack vectors, synonym 
replacement and adversarial suffix have the largest impact on decreasing ICL accuracy. Different models 
had lower tolerance to poison in different datasets. API-only models employed using Llama2-7B were used 
to model GPT-3.5 and GPT-4 since access to direct models was unavailable (He, et al., 2024). ICL accuracy 
was reduced by 10% using ICLPoison techniques (He, et al., 2024). 
 
He, et al. (2024) wanted to observe if a poisoned dataset could be transferred across different models. It 
was found that using the ICLPoison technique that “there was over a 30% decrease in accuracy for open-
source models” (He, et al., 2024). It was found that API based models and larger models are more resistant 
to the poisoned code. Partial poisoning was also performed to determine how much information could be 
poisoned and still have an impact on the dataset. At 10% poisoned data, there was a 7% decrease in 
performance, and a 15% decrease at 20%. 
 
Mitigation Limitations 
Machine unlearning, a process designed to remove specific data from trained models, has been shown to 
be largely ineffective against sophisticated poisoning attacks. Even when allocating generous 
computational resources to 10% of training computing, none of the tested unlearning algorithms could fully 
remove poisoned data, and some attacks left model performance virtually unchanged (Nguyen, Huynh, 
Pham, & Tran, 2023). Adversarial training has been shown to be circumvented by novel attack strategies 
and often leads to substantial increases in computational cost without guaranteeing complete protection 
(Korada et al., 2024). Real-time monitoring and heuristic defenses, such as accuracy thresholds, have been 
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shown to fail to detect stealthy or reiterative poisoning attacks where poisoned data can quickly propagate 
and degrade model performance (Nguyen, Huynh, Pham, & Tran, 2023; Li et al., 2024). As a result, there 
may be a pressing need for more robust, adaptive, and multi-layered defense mechanisms to safeguard AI 
systems against the evolving threat of data poisoning. 
 
Pawelczyk et al. (2025) demonstrated that there has been an increase in the need to take data out of machine 
learning models to be compliant with different international privacy protection laws. According to 
Pawelczyk et al. (2025), the most effective way to perform machine unlearning is to recreate the model, 
making sure the data is removed; however, this can be impractical due to the large nature of different 
machine learning models. Different unlearning algorithms have been made with an effort not to influence 
the model. The study aimed to find if a machine learning model could use unlearning algorithms to ignore 
data poisoning attacks (Pawelczyk, et al., 2025). The researchers came up with a different way to test 
poisoned data sets using Gaussian noise. This new model poisons the dataset and compares the poisoned 
datasets to the original one to determine the separation between the poisoned model and the original. 
Gaussian noise uses visually undetectable signals inside the corrupted training data (Pawelczyk, et al., 
2025). This type of data poisoning had no impact on the model’s performance in a significant way.  

Pawelczyk, et al. (2025) allowed for up to 10% of the training computer to be used to perform unlearning 
utilizing different unlearning algorithms. The researchers acknowledged that 10% is considered generous, 
and anything more than 10% would not be practical for unlearning. To measure the effectiveness of 
unlearning, the researchers measured the model's performance post-unlearning compared to the 
performance of a non-poisoned model to determine the unlearning ability (Pawelczyk, et al., 2025). 

None of the models that were tested removed all of the poisoned data completely (Pawelczyk, et al., 2025). 
The ability of an unlearning algorithm to work depends on the type of data poisoning that has occurred. 
Some models were able to mitigate some data poisoning attacks while not being able to unlearn others. The 
researchers have two hypotheses for why unlearning algorithms fail to remove poisons: approximate 
unlearning is unable to complete all of the unlearning with a reasonable computational budget (Pawelczyk, 
et al., 2025).  

In the Alber, et al. (2024) study, using known mitigation strategies, the amount of poisoned data remained 
unchanged, and the researchers developed a different approach that performs cross-references between the 
“LLM output and biomedical knowledge graphs for medical misinformation”. This model does not rely on 
another LLM to verify the information, but uses a separate dataset which captures over 90% of the 
misinformation from the poisoned LLM (Alber, et al., 2024). 
 

Methodology 
 

This systematic review was conducted to comprehensively identify, evaluate, and synthesize current 
research on the risks, impacts, and mitigation challenges of data poisoning in AI systems. 

Research Questions: This review seeks to answer: 

1. What are the primary types and mechanisms of data poisoning attacks targeting AI systems 
reported in the literature? 

2. Which sectors are identified as particularly vulnerable, and what are the specific 
consequences observed or simulated in these domains? 

3. What mitigation strategies have been proposed and evaluated, and what are their reported 
strengths and limitations? 
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4. What are the emerging ethical, societal, and governance challenges associated with AI data 
poisoning? 

A systematic search of literature published between January 2018 and May 2025 was performed across 
multiple electronic databases: IEEE Xplore, ACM Digital Library, SpringerLink, ScienceDirect, arXiv, and 
Google Scholar. Search queries combined keywords such as: ("data poisoning" OR "adversarial training 
data" OR "backdoor attack" OR "label flipping" OR "model poisoning") AND ("artificial intelligence" OR 
"machine learning" OR "deep learning" OR "LLM" OR "large language model") AND ("impact" OR "risk" 
OR "vulnerability" OR "threat") AND ("mitigation" OR "defense" OR "detection" OR "prevention"). 
Reference lists of identified key articles and relevant reviews were also manually scanned for additional 
studies. 
 

Discussion 
 
The synthesized findings reveal a persistent and evolving threat landscape for AI systems. The technical 
impacts, ranging from significant accuracy degradation to the generation of harmful or insecure outputs, 
are consistently reported across diverse model types and application domains. 
 
Ethical and Societal Ramifications 
A critical theme emerging from this review is the profound ethical and societal ramifications of data 
poisoning. Beyond performance metrics, poisoned AI systems can perpetuate biases, spread misinformation 
(as highlighted by studies on LLMs trained on datasets like The Pile), and erode public trust in AI. The ease 
with which attackers could generate harmful medical outputs (Alber et al., 2024) or vulnerable code 
(Cotroneo et al., 2024) underscores the potential for real-world harm.  The work by organizations like 
CheckPoint Research (2025) highlights concerns about retrieval poisoning and the malicious modification 
of LLMs, further emphasizing these risks.  Additionally, Shiferaw et al. (2024) noted in their research how 
leveraging popular AI tools, like ChatGPT, resulted in different answers to the same questions.  In addition, 
the type of question also mattered.  For example, they demonstrated there were differences in accuracy 
between, “what”, “why”, and “how” questions (Shiferaw et al., 2024). Consider the implications of 
accuracy and efficacy with the employment of AI with life-or-death situations. As such, explainable AI 
(XAI), which “refers to a set of methods that support humans in understanding how AI algorithms map 
certain inputs” becomes the process in which implementors of AI systems are able to demonstrate/explain 
the learning process directly to the datasets (Senoner et al, 2024, p. 1).  Considering that XAI can be labeled 
as either interpretable or not due to complexity (Senoner et al, 2024), Hartog et al. (2024) show that 
explainable artificial intelligence (XAI) methods generate degrees of uncertainty and subjectivity in their 
interpretation. This is critical as XAI models are used to produce more human understandable 
interpretations of the data (Hartog et al., 2024, Senoner et al, 2024).  So, data poisoning begins to assure 
that the model will present inaccurate results but this is coupled with the already demonstrated probability 
that the models are already, in some cases, producing suspect responses. Therefore, data poisoning becomes 
a very serious liability to AI models especially in the case where AI algorithms are unable to be explained 
due their complexity.     
 
Vulnerabilities in Critical Sectors 
Overall implications for various critical infrastructure sectors cannot be understated.  Kovacevic et al. 
(2024) highlight how rapid advancements in AI are presenting, “new opportunities for enhancing efficiency 
and economic competitiveness across various industries, especially in banking” (p. 1).  With a push for 
implementing AI in an effort to improve operations, it is clear, like all technology, AI represents a new 
vector in which adversaries can introduce threats.  For example, Reserve Bank of India Deputy Governor 
M Rajeshwar Rao noted how data bias was one of three critical areas of concern (NBFC, 2024).  Kovacevic 
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et al. (2024) demonstrated the dual-use possibilities wherein viable AI solutions can also be used for 
malicious reasons.  While much research focuses on finance and healthcare, the literature increasingly 
points to significant vulnerabilities in government and critical infrastructure (Rosiek, 2025).  Data poisoning 
in these areas, as discussed by various security analyses (e.g., Delinea, 2025; Certes, 2025), could disrupt 
essential services and undermine national security.   
 
Current Best Practices and Their Limitations 
The review identified several best practices, including data validation and sanitization, red teaming, and 
secure data handling, as advocated by Korada (2024) and employed by major AI providers. However, the 
limitations of current mitigation techniques, such as the ineffectiveness of some machine unlearning 
algorithms against sophisticated attacks (Pawelczyk et al., 2025) and the scalability challenges of 
adversarial training, remain a significant concern. 
 
Four large generative AI companies were analyzed for their best practices regarding how they keep their 
datasets secure: OpenAI, Microsoft, Google, and Meta. 
 
OpenAI analyzes the data sources that it pulls from and intermittently observes the responses of the large 
language model (LLM) to determine if something has happened to the dataset (Korada, 2024). Microsoft 
uses cryptographic authentication and safeguards the internal components of its AI model. Cryptographic 
authentication prevents threat actors from poisoning internal datasets or training models. As a result of 
Microsoft safeguarding the internal components, it makes it harder for threat actors to gain access to the 
system. Google leverages academic research to counter new and existing problems that may be emerging 
within the AI security field. Utilizing Zero Trust Content Disarm and Reconstruction (CDR) is also a way 
that Google attempts to keep its data secure. A CDR is used to validate, repair, and destroy any malicious 
content that may be uploaded to a dataset. Meta only utilizes patented CDRs to protect its data (Korada, 
2024). 
 
General best practices outlined by Korada include data validation and sanitization, red teaming, secure data 
handling, negative testing, and benchmark testing (Korada, 2024). Data validation and sanitization ensure 
that the information that is being used by the LLM is not malicious, preventing threat actors from poisoning 
a dataset or training data. Red teaming is when a team attempts to hack the LLM and make it do things it 
was not intended to. This allows developers to observe how their current model could be leveraged 
maliciously. Secure data handling allows only authenticated users with the correct clearances access to the 
model and training data. Negative testing is when the LLM is given poor data and is observed to see how 
that data affects the model. Benchmark testing analyzes how the LLM compares to other LLMs of the same 
magnitude (Korada, 2024). 
 
He, et al., (2024) outlined two different potential defenses that could be used to prevent ICLPoison 
technique attack: detection-based defense perplexity filter, and preprocessing defense paraphrasing (He, et 
al., 2024). If a prompt is more complex, the perplexity increases; if there is a high enough perplexity, it 
could indicate that someone is trying to prompt the LLM maliciously (He, et al., 2024). In terms of the 
processes used for ICLPoison, synonym replacement was the least likely to increase perplexity, and 
adversarial suffix was the most likely to increase perplexity. Preprocessing defense paraphrasing is a 
defense method that rewrites the prompt in a way that is safe for the model to process (He, et al., 2024). 
When tested for accuracy against ICLPoison it was found to be very effective in targeting adversarial suffix 
methods but decreased detection of synonym replacement. 
  

Conclusion and Future Research Directions 
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This systematic review has synthesized current knowledge on AI data poisoning, revealing its multifaceted 
nature and significant challenges in mitigation. Key themes emerging from the literature include the 
increasing sophistication of attack vectors, the severe impacts across critical sectors, and the current 
limitations of defensive strategies. While research has proposed various countermeasures, like Gaussian 
noise, (Pawelczyk, et al., 2025) a consistent finding across multiple studies (e.g., Pawelczyk et al., 2025; 
Nguyen et al., 2023) is that no single solution is foolproof, and many defenses struggle with scalability or 
adaptive attackers.  One could argue, this creates ‘another chapter’ in the challenges of securing systems.  
However, as highlighted by recent analyses (Delinea, 2025; Certes, 2025; MDPI, 2025 - Enhanced 
Blockchain-Based Data Poisoning Defense Mechanism), there's a need for defenses that can withstand 
novel attack strategies and operate effectively in real-world, large-scale systems. For example, this includes 
exploring blockchain-based integrity verification and advanced identity management for data pipelines.  
Considering the overall implications on training models with corrupt data, it is clear existing solutions must 
be rethought. 

Explainable AI (XAI) allows for a clear and transparent understanding of how AI models come to 
conclusions, explicitly stating how the model came to a solution. Through the use of XAI people are able 
to test the model and how the algorithms are impacting its decision making. (Sultan, 2025). Swarming 
systems are autonomous systems that make decentralized decisions. As a result of the decentralized nature 
of swarming systems they are prone to data poisoning attacks (Asadi, M., Rădulescu, R., & Nowé, A. 2025). 
The researchers proposed a new system for analysis of the autonomous systems, the PADEX framework. 
The XAI model compares a benign autonomous system to a potentially data poisoned system. This 
framework simulates the autonomous swarms and uses XAI to analyze the decisions that were simulated, 
providing insight into what the data poisoning may be impacting (Asadi, M., Rădulescu, R., & Nowé, A. 
2025). This framework needs to be researched more to determine its’ ability to benefit all sectors and 
advanced systems. For example, LLMs increasingly accessing real-time online information, strategies to 
prevent "retrieval poisoning" are crucial (Check Point Research, 2025).  Thus, developing stronger ethical 
guidelines and governance frameworks for data handling and AI model development, as suggested by the 
OWASP AI Security and Privacy Guide and the EU AI Act discussions (Galileo AI, 2025), is paramount. 
This includes addressing the creation and distribution of "Dark LLMs" (Check Point Research, 2025).  
Finally, with respect to longitudinal studies on defense efficacy, more research is needed on the long-term 
effectiveness of defenses and how they are circumvented over time.  As organizations begin to employ AI 
solutions as part of their daily operations, there is a possibility that they create an acceptance based on an 
assumed state of data purity.  Therefore, in addition to ensuring that data poisoning is not occurring, further 
research is needed to verify that even if the data is accurate, the model is training and behaving as expected.  
As such, the entire AI ecosystem from algorithm design, to data entry, to data training, must have methods 
in place to ensure accuracy is achieved prior to assuming the output created by AI tools is correct.   Any 
failure along this pipeline will result in inaccuracies.   
 
AI Statement  
In preparing this research, we utilized advanced Artificial Intelligence (AI) tools to assist in the research 
process. AL was employed to discover, organize, and synthesize relevant scholarly literature for inclusion 
in our study to enable a comprehensive review of the existing research. Additionally, AI-based tools were 
used to check for grammatical accuracy and proper formatting. 
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