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Abstract

Data poisoning attacks represent a critical threat to machine learning (ML) and artificial intelligence (Al)
systems, with consequences across any sector employing an Al solution. As Al grows and is adopted into our
personal lives and the industries we work for, the threat of manipulation may be unknown to those who adopt
it and undervalued by those who may profit from it. This paper attempts, through a meta-analysis, to
synthesize findings from select studies published between 2018 and 2025, evaluating the technical, ethical,
and sector-specific impacts of data poisoning. Key findings reveal that even minimal adversarial disturbances
(as low as 0.001% of training data) can degrade model accuracy by up to 30%, distort decision boundaries in
safety-critical systems (e.g., autonomous vehicles and healthcare diagnostics), and enable targeted attacks like
backdoor triggers in generative Al. Sector-specific analyses demonstrate financial losses in algorithmic
trading, misdiagnoses in medical imaging, and vulnerabilities in large language models (LLMs) trained on
poisoned datasets like The Pile. Mitigation strategies, including adversarial training and knowledge graph-
based verification, show partial efficacy but fail to address scalability challenges. This study underscores the
urgent need for robust, multi-layered defenses and interdisciplinary collaboration to safeguard Al ecosystems.

Keywords: Al, Machine learning, Large language models, Data poisoning, Adversarial training data,
Label flipping

Introduction

Data poisoning is the act of intentionally sending false or misleading data inputs, which can influence the
model’s behavior, typically with negative consequences (Korada, 2024). There are six different types of
data poisoning attacks: targeted attacks, non-targeted attacks, label poisoning/backdoor poisoning, training
data poisoning, model inversion attacks, and stealth attacks.

Targeted attacks look to exploit specific hardware or software within a system, leading to the model
misinterpreting the signals it is receiving. Whereas a targeted attack focuses on a certain misconfiguration,
a non-targeted attack targets the system as a whole. For example, Researchers showed the insertion of
malware into Al systems can manipulate outcomes without necessarily breaking the system (Shen & Xia,
2020). In this instance, a Trojan virus was installed into real Go which ultimately ‘manipulated’ the Al
behavior (Shen & Xia, 2020). As such, targeted attacks can allow for the customization of malware
specifically designed to alter Al to effectively run without the user’s awareness.

Label/backdoor poisoning targets the data that the model is trained on. The data on which the model is
trained is poisoned, allowing for the exploitation of the model when it is asked to make inferences on

433



Issues in Information Systems
Volume 25, Issue 4, pp. 433-442, 2025

different data (Korada, 2024). This type of data poisoning likely would require a threat actor to have direct
access to the LLM and the data it is trained on, either as an insider threat or through exploitation tactics. To
add, the problem becomes even more challenging as we continue to leverage Al to generate code. For
example, the implementation of Al code generators allows for the direct manipulation of code generation
software as most Al code generation is training on, “large amounts of data, often collected from un-sanitized
online sources” (Cotroneo et al, 2024, p. 280). As such, it becomes easy to manipulate the Al training by
introducing large amounts of code into code repositories wherein vulnerabilities exist (Cotroneo et al, 2024)

Training data poisoning is similar to label/backdoor poisoning; training data poisoning targets internal
datasets, but targets the training examples. Usually, the manipulations are minor but can cause disruptions
and affect predictions in the future. In fact, Koh et al (2022) noted in their research, adding just 3% poisoned
data can result in increases in test error from 3 to 24%. The other poisoning methods target the system or
datasets directly, causing disruptions or incorrect inferences; however, model inversion attacks try to extract
the data through queries of the model, and the threat actor attempts to recreate the training samples the
model was trained on.

Stealth attacks involve the threat actor attempting to evade detection while still exploiting the system and
potentially causing harm (Korada, 2024). A stealth attack can apply to any of the previous injections as
long as that injection cannot be detected by systems. Furthermore, as noted earlier, the introduction of
customized malware to alter Al behavior can occur in such a way as to be unnoticed by the user (Shen &
Xia, 2020).

The proliferation of Al systems in critical domains, from healthcare to finance, may heighten vulnerabilities
to data poisoning, a form of adversarial attack where malicious actors manipulate training data to corrupt
model behavior. Unlike traditional cyberattacks, data poisoning exploits the inherent trust in training data,
making detection challenging and consequences severe. Alber et al. (2025) demonstrated that poisoning
just 0.001% of medical training tokens in LLMs increased harmful outputs by 4.8%, while Huang et al.
(2020) achieved 41% attack success rates in code-generating models with 3% poisoned data.

It is clear Al manipulation can occur in any stage of the process which generates the usable Al model. To
limit the analysis, this paper focuses on the systematic review of data poisoning consequences across three
dimensions. From this vantage point, we attempt to show the implications across all Al-connected systems.
We focused on the three dimensions: technical impacts, sector-specific risks, and mitigation limitations.

Synthesis of Findings

Technical Impacts

The technical impacts of data poisoning attacks could be profound and complex. At their core, these attacks
may degrade model accuracy, distort decision boundaries, and amplify vulnerabilities within affected
systems. For example, even minimal poisoning, such as corrupting 0.001% of tokens in a medical dataset,
can increase the incidence of harmful outputs by nearly 5%, making it difficult for human evaluators to
distinguish between legitimate and poisoned content (Alber et al., 2025). In neural machine translation
models used for code generation, poisoning as little as 3% of the training data can result in a 12-41%
poisoning attack success rate, producing code with vulnerabilities that would otherwise not occur (Korada
et al., 2024). In addition, “poisoned data does not have to look anomalous; if the poisoned points are
carefully coordinated” (Koh et al, 2020, p. 4). These technical disruptions may not be limited to a single
model type or application as they could potentially propagate through updates and retraining, compounding
over time and undermining the reliability of Al systems across domains (Alber et al., 2025; Korada et al.,
2024)
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Cotroneo, Improta, Liguori, & Natella (2024) explore how neural machine translation (NMT) Al code
generators can be poisoned to produce vulnerable code. Current LLMs utilize open-source data from code
repositories including GitHub, HuggingFace, and StackOverflow. As the datasets are pulled from these
sources, they could potentially contain poisoned data. There are few restraints or guidelines on sanitizing
the data pulled from these repositories, and most are trusted without any checks. Cotroneo et al. wanted to
test how secure Al code generators are. Three different NMT models were poisoned, and the results of the
poisoned data were recorded. According to Controneo et al., Seq2Seq, CodeBERT, and CodeT5+. NMT
models are considered the best solution for Al-based code generation. The study's findings revealed that if
3% of the data were poisoned, it would affect code generation. When increasing the amount of the poisoned
data to 6%, all NMT models contained more vulnerable code. Pre-trained models can be targeted with
poisoning attacks, and it will not affect the performance of the models. The attack's success depended on
the amount of poisoned training data and the model architecture.

Sector Specific Risks

Sector-specific data poisoning risks, as demonstrated by case studies in healthcare, finance, autonomous
systems, and generative Al, may be equally vulnerable. In healthcare, public datasets such as The Pile and
PubMed may be susceptible to poisoning. Potential attackers could inject misinformation at scale for
relatively little cost. This may directly impact clinical decision-making, as models trained on these datasets
may produce unsafe recommendations that clinicians cannot reliably identify as erroneous (Alber et al.,
2025). In the financial sector, poisoning just 1% of training data in fraud detection or trading algorithms
can lead to significant economic losses and increased false positives, undermining trust in automated
systems (Korada et al., 2024). Autonomous systems, such as self-driving vehicles, could be equally
vulnerable to misclassification of critical objects like road signs, which can result in catastrophic safety
failures. Generative Al models may also be at risk, especially those relying on in-context learning. Targeted
poisoning could decrease accuracy by up to 30%, with open-source models being easily accessible and
susceptible (Li et al., 2024).

Medical large language models may be vulnerable to data-poisoning attacks that utilize the dataset known
as The Pile, which is known for LLM development (Alber, et al., 2024). As with other LLM’s public data
can be used to train different models. Within the medical realm, these public databases include Common
Crawl, PubMed, and Project Gutenberg (Alber, et al., 2024). These platforms have a lack of oversight which
could lead to potentially vulnerable datasets if poisoned. Researchers performed an in-depth analysis on
The Pile, as it is the most widely used dataset for LLMs and has the least vulnerable medical content (Alber,
et al., 2024). Of the data that was contained within The Pile, 27.4% of it was considered a vulnerable subset,
with more than half of the vulnerable data originating from a public dataset known as the Common Crawl
(Alber, et al., 2024).

Alber et al. (2024) created a simulated data poisoning attack against The Pile. The researchers created
150,000 misinformation articles using OpenAl GPT-3.5 turbo API and used these articles to corrupt
information in The Pile. Two different types of parameters were tested: a broad targeting technique with a
parameter of 1.3 billion across many different concepts, where 0.5% and 1% of the data were poisoned, and
a smaller targeting technique across single concepts with a parameter of 1.3 billion and 4 billion, where
0.001% of the dataset was poisoned (Alber, et al., 2024).

Fifteen clinicians were tasked with determining the poisoned response and the baseline response; the
reviewers were unable to determine the difference between the two results. The data in the 1.3 billion
parameters had the p-values 0.0314 and 0.00484 between the 0.5% and 1.0% poisoned data, respectively
(Alber, et al., 2024). When the concept-specific data was poisoned, at 0.001%, there was a 4.8% increase
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in harmful content. The fake data that was created was created for less than $100 USD, it is predicted by
the researchers that if this were formed at scale, it would remain under $1,000 USD to train a model with
15 million injected tokens (Alber, et al., 2024).

Data Poisoning for In-context Learning (ICL) analyzed how in-context learning could be poisoned, leading
to less accurate responses using different datasets and seven different models (He, et al., 2024). The datasets
used in this experiment were Stanford Sentiment Treebank (SST2), Corpus of Linguistic Acceptability
(Cola), Emo dataset, AG’s new (AG) corpus, and Poem Sentiment (Poem). The models used to test against
the datasets were Llama2-7B, Pythia, Falcon-7B, GPT-J-6B, and MPT-7B. API only models included GPT-
3.5 and GPT-4.

ICL allows models to make predictions based on the prompt information, leading to more relevant
predictions by the model. For this study to occur, the researchers assumed that a threat actor had access to
either the full data set or a portion of the dataset (He, et al., 2024). The researchers created an ICL poisoning
technique, ICLPoison, which leveraged hidden states within the ICL model. This attack vector was
optimized and categorized into three main sections: synonym replacement, character replacement, and
adversarial suffix (He, et al., 2024). Synonym replacement replaced a limited number of words with
synonyms of that word to avoid detection while still maintaining the meaning of the statement sent to the
LLM. The researchers also implemented a greedy system only allowing for replacement of a limited number
of words to prevent detection. Using GloVe, the researchers find synonyms using word embedding (He, et
al., 2024). Character replacement is similar to synonym replacement; however, this method replaces
characters to assist in detection evasion (He, et al., 2024). Adversarial suffix adds tokens that are
imperceptible to humans at the end of a prompt. As with synonym replacement, the adversarial suffix is
limited to the extent to which it is allowed to replace (He, et al., 2024).

The results of the He et al. (2024) study revealed that open-source models that were not poisoned were
accurate over 88% of the time (He, et al., 2024). When performing an ICLPoison attack, the ICL accuracy
dropped 10% and over 30% in some instances (He, et al., 2024). Depending on the model and dataset that
was used, the effectiveness of the attack was influenced; of the different ICLPoison attack vectors, synonym
replacement and adversarial suffix have the largest impact on decreasing ICL accuracy. Different models
had lower tolerance to poison in different datasets. API-only models employed using [Llama2-7B were used
to model GPT-3.5 and GPT-4 since access to direct models was unavailable (He, et al., 2024). ICL accuracy
was reduced by 10% using ICLPoison techniques (He, et al., 2024).

He, et al. (2024) wanted to observe if a poisoned dataset could be transferred across different models. It
was found that using the ICLPoison technique that “there was over a 30% decrease in accuracy for open-
source models” (He, et al., 2024). It was found that API based models and larger models are more resistant
to the poisoned code. Partial poisoning was also performed to determine how much information could be
poisoned and still have an impact on the dataset. At 10% poisoned data, there was a 7% decrease in
performance, and a 15% decrease at 20%.

Mitigation Limitations

Machine unlearning, a process designed to remove specific data from trained models, has been shown to
be largely ineffective against sophisticated poisoning attacks. Even when allocating generous
computational resources to 10% of training computing, none of the tested unlearning algorithms could fully
remove poisoned data, and some attacks left model performance virtually unchanged (Nguyen, Huynh,
Pham, & Tran, 2023). Adversarial training has been shown to be circumvented by novel attack strategies
and often leads to substantial increases in computational cost without guaranteeing complete protection
(Korada et al., 2024). Real-time monitoring and heuristic defenses, such as accuracy thresholds, have been

436



Issues in Information Systems
Volume 25, Issue 4, pp. 433-442, 2025

shown to fail to detect stealthy or reiterative poisoning attacks where poisoned data can quickly propagate
and degrade model performance (Nguyen, Huynh, Pham, & Tran, 2023; Li et al., 2024). As a result, there
may be a pressing need for more robust, adaptive, and multi-layered defense mechanisms to safeguard Al
systems against the evolving threat of data poisoning.

Pawelczyk et al. (2025) demonstrated that there has been an increase in the need to take data out of machine
learning models to be compliant with different international privacy protection laws. According to
Pawelczyk et al. (2025), the most effective way to perform machine unlearning is to recreate the model,
making sure the data is removed; however, this can be impractical due to the large nature of different
machine learning models. Different unlearning algorithms have been made with an effort not to influence
the model. The study aimed to find if a machine learning model could use unlearning algorithms to ignore
data poisoning attacks (Pawelczyk, et al., 2025). The researchers came up with a different way to test
poisoned data sets using Gaussian noise. This new model poisons the dataset and compares the poisoned
datasets to the original one to determine the separation between the poisoned model and the original.
Gaussian noise uses visually undetectable signals inside the corrupted training data (Pawelczyk, et al.,
2025). This type of data poisoning had no impact on the model’s performance in a significant way.

Pawelczyk, et al. (2025) allowed for up to 10% of the training computer to be used to perform unlearning
utilizing different unlearning algorithms. The researchers acknowledged that 10% is considered generous,
and anything more than 10% would not be practical for unlearning. To measure the effectiveness of
unlearning, the researchers measured the model's performance post-unlearning compared to the
performance of a non-poisoned model to determine the unlearning ability (Pawelczyk, et al., 2025).

None of the models that were tested removed all of the poisoned data completely (Pawelczyk, et al., 2025).
The ability of an unlearning algorithm to work depends on the type of data poisoning that has occurred.
Some models were able to mitigate some data poisoning attacks while not being able to unlearn others. The
researchers have two hypotheses for why unlearning algorithms fail to remove poisons: approximate
unlearning is unable to complete all of the unlearning with a reasonable computational budget (Pawelczyk,
et al., 2025).

In the Alber, et al. (2024) study, using known mitigation strategies, the amount of poisoned data remained
unchanged, and the researchers developed a different approach that performs cross-references between the
“LLM output and biomedical knowledge graphs for medical misinformation”. This model does not rely on
another LLM to verify the information, but uses a separate dataset which captures over 90% of the
misinformation from the poisoned LLM (Alber, et al., 2024).

Methodology

This systematic review was conducted to comprehensively identify, evaluate, and synthesize current
research on the risks, impacts, and mitigation challenges of data poisoning in Al systems.

Research Questions: This review seeks to answer:

1.  What are the primary types and mechanisms of data poisoning attacks targeting Al systems
reported in the literature?

2. Which sectors are identified as particularly vulnerable, and what are the specific
consequences observed or simulated in these domains?

3. What mitigation strategies have been proposed and evaluated, and what are their reported
strengths and limitations?
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4.  What are the emerging ethical, societal, and governance challenges associated with Al data
poisoning?

A systematic search of literature published between January 2018 and May 2025 was performed across
multiple electronic databases: IEEE Xplore, ACM Digital Library, SpringerLink, ScienceDirect, arXiv, and
Google Scholar. Search queries combined keywords such as: ("data poisoning" OR "adversarial training
data" OR "backdoor attack" OR "label flipping" OR "model poisoning") AND ("artificial intelligence" OR
"machine learning" OR "deep learning" OR "LLM" OR "large language model") AND ("impact" OR "risk"
OR "vulnerability" OR "threat") AND ("mitigation” OR "defense" OR "detection" OR "prevention").
Reference lists of identified key articles and relevant reviews were also manually scanned for additional
studies.

Discussion

The synthesized findings reveal a persistent and evolving threat landscape for Al systems. The technical
impacts, ranging from significant accuracy degradation to the generation of harmful or insecure outputs,
are consistently reported across diverse model types and application domains.

Ethical and Societal Ramifications

A critical theme emerging from this review is the profound ethical and societal ramifications of data
poisoning. Beyond performance metrics, poisoned Al systems can perpetuate biases, spread misinformation
(as highlighted by studies on LLMs trained on datasets like The Pile), and erode public trust in Al. The ease
with which attackers could generate harmful medical outputs (Alber et al., 2024) or vulnerable code
(Cotroneo et al., 2024) underscores the potential for real-world harm. The work by organizations like
CheckPoint Research (2025) highlights concerns about retrieval poisoning and the malicious modification
of LLMs, further emphasizing these risks. Additionally, Shiferaw et al. (2024) noted in their research how
leveraging popular Al tools, like ChatGPT, resulted in different answers to the same questions. In addition,
the type of question also mattered. For example, they demonstrated there were differences in accuracy
between, “what”, “why”, and “how” questions (Shiferaw et al., 2024). Consider the implications of
accuracy and efficacy with the employment of Al with life-or-death situations. As such, explainable Al
(XAI), which “refers to a set of methods that support humans in understanding how Al algorithms map
certain inputs” becomes the process in which implementors of Al systems are able to demonstrate/explain
the learning process directly to the datasets (Senoner et al, 2024, p. 1). Considering that XAl can be labeled
as either interpretable or not due to complexity (Senoner et al, 2024), Hartog et al. (2024) show that
explainable artificial intelligence (XAI) methods generate degrees of uncertainty and subjectivity in their
interpretation. This is critical as XAI models are used to produce more human understandable
interpretations of the data (Hartog et al., 2024, Senoner et al, 2024). So, data poisoning begins to assure
that the model will present inaccurate results but this is coupled with the already demonstrated probability
that the models are already, in some cases, producing suspect responses. Therefore, data poisoning becomes
a very serious liability to Al models especially in the case where Al algorithms are unable to be explained
due their complexity.

Vulnerabilities in Critical Sectors

Overall implications for various critical infrastructure sectors cannot be understated. Kovacevic et al.
(2024) highlight how rapid advancements in Al are presenting, “new opportunities for enhancing efficiency
and economic competitiveness across various industries, especially in banking” (p. 1). With a push for
implementing Al in an effort to improve operations, it is clear, like all technology, Al represents a new
vector in which adversaries can introduce threats. For example, Reserve Bank of India Deputy Governor
M Rajeshwar Rao noted how data bias was one of three critical areas of concern (NBFC, 2024). Kovacevic
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et al. (2024) demonstrated the dual-use possibilities wherein viable Al solutions can also be used for
malicious reasons. While much research focuses on finance and healthcare, the literature increasingly
points to significant vulnerabilities in government and critical infrastructure (Rosiek, 2025). Data poisoning
in these areas, as discussed by various security analyses (e.g., Delinea, 2025; Certes, 2025), could disrupt
essential services and undermine national security.

Current Best Practices and Their Limitations
The review identified several best practices, including data validation and sanitization, red teaming, and
secure data handling, as advocated by Korada (2024) and employed by major Al providers. However, the
limitations of current mitigation techniques, such as the ineffectiveness of some machine unlearning
algorithms against sophisticated attacks (Pawelczyk et al., 2025) and the scalability challenges of
adversarial training, remain a significant concern.

Four large generative Al companies were analyzed for their best practices regarding how they keep their
datasets secure: OpenAl, Microsoft, Google, and Meta.

OpenAl analyzes the data sources that it pulls from and intermittently observes the responses of the large
language model (LLM) to determine if something has happened to the dataset (Korada, 2024). Microsoft
uses cryptographic authentication and safeguards the internal components of its Al model. Cryptographic
authentication prevents threat actors from poisoning internal datasets or training models. As a result of
Microsoft safeguarding the internal components, it makes it harder for threat actors to gain access to the
system. Google leverages academic research to counter new and existing problems that may be emerging
within the Al security field. Utilizing Zero Trust Content Disarm and Reconstruction (CDR) is also a way
that Google attempts to keep its data secure. A CDR is used to validate, repair, and destroy any malicious
content that may be uploaded to a dataset. Meta only utilizes patented CDRs to protect its data (Korada,
2024).

General best practices outlined by Korada include data validation and sanitization, red teaming, secure data
handling, negative testing, and benchmark testing (Korada, 2024). Data validation and sanitization ensure
that the information that is being used by the LLM is not malicious, preventing threat actors from poisoning
a dataset or training data. Red teaming is when a team attempts to hack the LLM and make it do things it
was not intended to. This allows developers to observe how their current model could be leveraged
maliciously. Secure data handling allows only authenticated users with the correct clearances access to the
model and training data. Negative testing is when the LLM is given poor data and is observed to see how
that data affects the model. Benchmark testing analyzes how the LLM compares to other LLMs of the same
magnitude (Korada, 2024).

He, et al., (2024) outlined two different potential defenses that could be used to prevent ICLPoison
technique attack: detection-based defense perplexity filter, and preprocessing defense paraphrasing (He, et
al., 2024). If a prompt is more complex, the perplexity increases; if there is a high enough perplexity, it
could indicate that someone is trying to prompt the LLM maliciously (He, et al., 2024). In terms of the
processes used for ICLPoison, synonym replacement was the least likely to increase perplexity, and
adversarial suffix was the most likely to increase perplexity. Preprocessing defense paraphrasing is a
defense method that rewrites the prompt in a way that is safe for the model to process (He, et al., 2024).
When tested for accuracy against ICLPoison it was found to be very effective in targeting adversarial suffix
methods but decreased detection of synonym replacement.

Conclusion and Future Research Directions
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This systematic review has synthesized current knowledge on Al data poisoning, revealing its multifaceted
nature and significant challenges in mitigation. Key themes emerging from the literature include the
increasing sophistication of attack vectors, the severe impacts across critical sectors, and the current
limitations of defensive strategies. While research has proposed various countermeasures, like Gaussian
noise, (Pawelczyk, et al., 2025) a consistent finding across multiple studies (e.g., Pawelczyk et al., 2025;
Nguyen et al., 2023) is that no single solution is foolproof, and many defenses struggle with scalability or
adaptive attackers. One could argue, this creates ‘another chapter’ in the challenges of securing systems.
However, as highlighted by recent analyses (Delinea, 2025; Certes, 2025; MDPI, 2025 - Enhanced
Blockchain-Based Data Poisoning Defense Mechanism), there's a need for defenses that can withstand
novel attack strategies and operate effectively in real-world, large-scale systems. For example, this includes
exploring blockchain-based integrity verification and advanced identity management for data pipelines.
Considering the overall implications on training models with corrupt data, it is clear existing solutions must
be rethought.

Explainable Al (XAI) allows for a clear and transparent understanding of how Al models come to
conclusions, explicitly stating how the model came to a solution. Through the use of XAl people are able
to test the model and how the algorithms are impacting its decision making. (Sultan, 2025). Swarming
systems are autonomous systems that make decentralized decisions. As a result of the decentralized nature
of swarming systems they are prone to data poisoning attacks (Asadi, M., Radulescu, R., & Nowé¢, A. 2025).
The researchers proposed a new system for analysis of the autonomous systems, the PADEX framework.
The XAI model compares a benign autonomous system to a potentially data poisoned system. This
framework simulates the autonomous swarms and uses XAl to analyze the decisions that were simulated,
providing insight into what the data poisoning may be impacting (Asadi, M., Radulescu, R., & Now¢, A.
2025). This framework needs to be researched more to determine its’ ability to benefit all sectors and
advanced systems. For example, LLMs increasingly accessing real-time online information, strategies to
prevent "retrieval poisoning" are crucial (Check Point Research, 2025). Thus, developing stronger ethical
guidelines and governance frameworks for data handling and Al model development, as suggested by the
OWASP AI Security and Privacy Guide and the EU Al Act discussions (Galileo Al, 2025), is paramount.
This includes addressing the creation and distribution of "Dark LLMs" (Check Point Research, 2025).
Finally, with respect to longitudinal studies on defense efficacy, more research is needed on the long-term
effectiveness of defenses and how they are circumvented over time. As organizations begin to employ Al
solutions as part of their daily operations, there is a possibility that they create an acceptance based on an
assumed state of data purity. Therefore, in addition to ensuring that data poisoning is not occurring, further
research is needed to verify that even if the data is accurate, the model is training and behaving as expected.
As such, the entire Al ecosystem from algorithm design, to data entry, to data training, must have methods
in place to ensure accuracy is achieved prior to assuming the output created by Al tools is correct. Any
failure along this pipeline will result in inaccuracies.

Al Statement

In preparing this research, we utilized advanced Artificial Intelligence (Al) tools to assist in the research
process. AL was employed to discover, organize, and synthesize relevant scholarly literature for inclusion
in our study to enable a comprehensive review of the existing research. Additionally, Al-based tools were
used to check for grammatical accuracy and proper formatting.
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